A geometric approach to self-propelled motion in isotropic & anisotropic environments

被引:17
|
作者
Grossmann, R. [1 ]
Peruani, F. [2 ]
Baer, M. [1 ]
机构
[1] Phys Tech Bundesanstalt, D-10587 Berlin, Germany
[2] Univ Nice Sophia Antipolis, Lab JA Dieudonne, UMR CNRS 7351, F-06108 Nice 02, France
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2015年 / 224卷 / 07期
关键词
D O I
10.1140/epjst/e2015-02465-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a geometric perspective to describe the motion of self-propelled particles moving at constant speed in d dimensions. We exploit the fact that the vector that conveys the direction of motion of the particle performs a random walk on a (d - 1)-dimensional manifold. We show that the particle performs isotropic diffusion in d-dimensions if the manifold corresponds to a hypersphere. In contrast, we find that the self-propelled particle exhibits anisotropic diffusion if this manifold corresponds to a deformed hypersphere (e.g. an ellipsoid). This simple approach provides an unified framework to deal with isotropic as well as anisotropic diffusion of particles moving at constant speed in any dimension.
引用
收藏
页码:1377 / 1394
页数:18
相关论文
共 50 条
  • [1] A geometric approach to self-propelled motion in isotropic & anisotropic environments
    R. Großmann
    F. Peruani
    M. Bär
    The European Physical Journal Special Topics, 2015, 224 : 1377 - 1394
  • [2] Inertial self-propelled particles in anisotropic environments
    Sprenger, Alexander R.
    Scholz, Christian
    Ldov, Anton
    Wittkowski, Raphael
    Loewen, Hartmut
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [3] Inertial self-propelled particles in anisotropic environments
    Sprenger, Alexander R.
    Scholz, Christian
    Ldov, Anton
    Wittkowski, Raphael
    Loewen, Hartmut
    JETP LETTERS, 2023,
  • [4] Inertial self-propelled particles in anisotropic environments
    Alexander R. Sprenger
    Christian Scholz
    Anton Ldov
    Raphael Wittkowski
    Hartmut Löwen
    Communications Physics, 6 (1)
  • [5] Collective motion of self-propelled particles with complex noise environments
    Zhang, Bing-Quan
    Shao, Zhi-Gang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 563
  • [6] Brownian motion of a self-propelled particle
    ten Hagen, B.
    van Teeffelen, S.
    Loewen, H.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (19)
  • [7] Self-propelled motion of microscale capsules
    Lu, Annie Xi
    DeVoe, Don
    Raghavan, Srinivasa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [8] Motion with Memory of a Self-Propelled Object
    Nakata, Satoshi
    Hata, Misato
    Ikura, Yumihiko S.
    Heisler, Eric
    Awazu, Akinori
    Kitahata, Hiroyuki
    Nishimori, Hiraku
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (46): : 24490 - 24495
  • [9] Collective Motion of Self-Propelled Particles with Memory
    Nagai, Ken H.
    Sumino, Yutaka
    Montagne, Raul
    Aranson, Igor S.
    Chate, Hugues
    PHYSICAL REVIEW LETTERS, 2015, 114 (16)
  • [10] Spontaneously ordered motion of self-propelled particles
    Czirok, A
    Stanley, HE
    Vicsek, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05): : 1375 - 1385