Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition

被引:1
|
作者
Li, Jinpeng [1 ,2 ]
Qiu, Shuang [1 ,2 ]
Shen, Yuan-Yuan [2 ,3 ]
Liu, Cheng-Lin [2 ,3 ,4 ]
He, Huiguang [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, Res Ctr Braininspired Intelligence, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain modeling; Electroencephalography; Emotion recognition; Data models; Training; Calibration; Training data; Brain-computer interface; emotion recognition; transfer learning (TL); DIFFERENTIAL ENTROPY FEATURE; BRAIN;
D O I
10.1109/TCYB.2019.2904052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalogram (EEG) has been widely used in emotion recognition due to its high temporal resolution and reliability. Since the individual differences of EEG are large, the emotion recognition models could not be shared across persons, and we need to collect new labeled data to train personal models for new users. In some applications, we hope to acquire models for new persons as fast as possible, and reduce the demand for the labeled data amount. To achieve this goal, we propose a multisource transfer learning method, where existing persons are sources, and the new person is the target. The target data are divided into calibration sessions for training and subsequent sessions for test. The first stage of the method is source selection aimed at locating appropriate sources. The second is style transfer mapping, which reduces the EEG differences between the target and each source. We use few labeled data in the calibration sessions to conduct source selection and style transfer. Finally, we integrate the source models to recognize emotions in the subsequent sessions. The experimental results show that the three-category classification accuracy on benchmark SEED improves by 12.72% comparing with the nontransfer method. Our method facilitates the fast deployment of emotion recognition models by reducing the reliance on the labeled data amount, which has practical significance especially in fast-deployment scenarios.
引用
收藏
页码:3281 / 3293
页数:13
相关论文
共 50 条
  • [21] Gusa: Graph-Based Unsupervised Subdomain Adaptation for Cross-Subject EEG Emotion Recognition
    Li, Xiaojun
    Chen, C. L. Philip
    Chen, Bianna
    Zhang, Tong
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2024, 15 (03) : 1451 - 1462
  • [22] Cross-Subject EEG Feature Selection for Emotion Recognition Using Transfer Recursive Feature Elimination
    Yin, Zhong
    Wang, Yongxiong
    Liu, Li
    Zhang, Wei
    Zhang, Jianhua
    FRONTIERS IN NEUROROBOTICS, 2017, 11
  • [23] Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
    Zuo, Xin
    Zhang, Chi
    Hamalainen, Timo
    Gao, Hanbing
    Fu, Yu
    Cong, Fengyu
    ENTROPY, 2022, 24 (09)
  • [24] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11
  • [25] A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in EEG data
    Deng, Xin
    Li, Chenhui
    Hong, Xinyi
    Huo, Huaxiang
    Qin, Hongxing
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 97
  • [26] A deep subdomain associate adaptation network for cross-session and cross-subject EEG emotion recognition
    Meng, Ming
    Hu, Jiahao
    Gao, Yunyuan
    Kong, Wanzeng
    Luo, Zhizeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 78
  • [27] FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition
    Yu, Peng
    He, Xiaopeng
    Li, Haoyu
    Dou, Haowen
    Tan, Yeyu
    Wu, Hao
    Chen, Badong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [28] Cross-subject emotion EEG signal recognition based on source microstate analysis
    Zhang, Lei
    Xiao, Di
    Guo, Xiaojing
    Li, Fan
    Liang, Wen
    Zhou, Bangyan
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [29] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [30] Learning a robust unified domain adaptation framework for cross-subject EEG-based emotion recognition
    Jimenez-Guarneros, Magdiel
    Fuentes-Pineda, Gibran
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86