The method of stochastic dynamics in the Wigner formulation of quantum mechanics

被引:0
|
作者
Kamskii, VL
MEdvedev, YV
Filinov, VS
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method for the numerical solution of the Wigner-Liouville equation in the Wigner formulation of quantum mechanics is explained. The method combines two classical approaches: the method of molecular dynamics and the Monte Carlo method. Results of test calculations for one-, two- and three-dimensional systems are compared with analytic solutions. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:923 / 934
页数:12
相关论文
共 50 条
  • [1] Quantum Dynamics of Charged Fermions in the Wigner Formulation of Quantum Mechanics
    Filinov, Vladimir
    Larkin, Alexander
    UNIVERSE, 2018, 4 (12):
  • [2] Quantum dynamics of charged particles in the Wigner formulation of quantum mechanics
    Filinov, V. S.
    Larkin, A. S.
    XXXIII INTERNATIONAL CONFERENCE ON EQUATIONS OF STATE FOR MATTER, 2019, 1147
  • [3] Quantum transport properties of composite materials by generalized molecular dynamics method in Wigner formulation of quantum mechanics
    Filinov, VS
    Oparin, AM
    PHYSICA A, 1997, 241 (1-2): : 393 - 397
  • [4] Electron dynamics and Anderson localization in Wigner formulation of quantum statistical mechanics
    Filinov, VS
    Lozovik, YE
    Filinov, AV
    Zacharov, IE
    CONTRIBUTIONS TO PLASMA PHYSICS, 1999, 39 (1-2) : 65 - 68
  • [5] Wigner approach in quantum statistical mechanics and quantum generalization molecular dynamics method
    Filinov, VS
    MONTE CARLO AND MOLECULAR DYNAMICS OF CONDENSED MATTER SYSTEMS, 1996, 49 : 927 - &
  • [6] RELATIVISTIC GENERALIZATION OF THE WIGNER FUNCTION AND ITS INTERPRETATION IN THE CAUSAL STOCHASTIC FORMULATION OF QUANTUM-MECHANICS
    HOLLAND, PR
    KYPRIANIDIS, A
    MARIC, Z
    VIGIER, JP
    PHYSICAL REVIEW A, 1986, 33 (06) : 4380 - 4383
  • [7] Hydrodynamical formulation of Wigner-Dunkl quantum mechanics
    Rosyid, M. F.
    MODERN PHYSICS LETTERS A, 2023, 38 (30N31)
  • [8] A mathematical introduction to the Wigner formulation of quantum mechanics.
    Barletti, L
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (03): : 693 - 716
  • [9] Weyl-Wigner formulation of noncommutative quantum mechanics
    Bastos, Catarina
    Bertolami, Orfeu
    Dias, Nuno Costa
    Prata, Joao Nuno
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (07)
  • [10] Wigner approach and generalization molecular dynamics method in quantum mechanics.
    Filinov, VS
    PHOTONIC QUANTUM COMPUTING, 1997, 3076 : 220 - 231