A Massive Star Is Born: How Feedback from Stellar Winds, Radiation Pressure, and Collimated Outflows Limits Accretion onto Massive Stars

被引:13
作者
Rosen, Anna L. [1 ,2 ]
机构
[1] Harvard & Smithsonian, Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA
[2] Univ Calif San Diego, Ctr Astron & Space Sci, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; PROTOSTELLAR COLLAPSE; HYDRODYNAMIC MODEL; DUST CONTINUUM; HII-REGIONS; EVOLUTION; CLOUD; PROTOSTARS; DYNAMICS; BUBBLES;
D O I
10.3847/1538-4357/ac9f3d
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Massive protostars attain high luminosities as they are actively accreting and the radiation pressure exerted on the gas in the star's atmosphere may launch isotropic high-velocity winds. These winds will collide with the surrounding gas producing shock-heated (T similar to 10(7) K) tenuous gas that adiabatically expands and pushes on the dense gas that may otherwise be accreted. We present a suite of 3D radiation-magnetohydrodynamic simulations of the collapse of massive prestellar cores and include radiative feedback from the stellar and dust-reprocessed radiation fields, collimated outflows, and, for the first time, isotropic stellar winds to model how these processes affect the formation of massive stars. We find that winds are initially launched when the massive protostar is still accreting and its wind properties evolve as the protostar contracts to the main sequence. Wind feedback drives asymmetric adiabatic wind bubbles that have a bipolar morphology because the dense circumstellar material pinches the expansion of the hot shock-heated gas. We term this the "wind tunnel effect." If the core is magnetized, wind feedback is less efficient at driving adiabatic wind bubbles initially because magnetic tension delays their growth. We find that wind feedback eventually quenches accretion onto similar to 30 M (circle dot) protostars that form from the collapse of the isolated cores simulated here. Hence, our results suggest that greater than or similar to 30 M (circle dot) stars likely require larger-scale dynamical inflows from their host cloud to overcome wind feedback. Additionally, we discuss the implications of observing adiabatic wind bubbles with Chandra while the massive protostars are still highly embedded.
引用
收藏
页数:22
相关论文
共 113 条
[1]   X-RAY EMISSION FROM YOUNG STARS IN THE MASSIVE STAR-FORMING REGION IRAS 20126+4104 [J].
Anderson, C. N. ;
Hofner, P. ;
Shepherd, D. ;
Creech-Eakman, M. .
ASTRONOMICAL JOURNAL, 2011, 142 (05)
[2]   Continuity of accretion from clumps to Class 0 high-mass protostars in SDC335 [J].
Avison, A. ;
Fuller, G. A. ;
Peretto, N. ;
Duarte-Cabral, A. ;
Rosen, A. L. ;
Traficante, A. ;
Pineda, J. E. ;
Guesten, R. ;
Cunningham, N. .
ASTRONOMY & ASTROPHYSICS, 2021, 645
[3]   THE ONSET OF MASSIVE STAR FORMATION: THE EVOLUTION OF TEMPERATURE AND DENSITY STRUCTURE IN AN INFRARED DARK CLOUD [J].
Battersby, Cara ;
Ginsburg, Adam ;
Bally, John ;
Longmore, Steve ;
Dunham, Miranda ;
Darling, Jeremy .
ASTROPHYSICAL JOURNAL, 2014, 787 (02)
[4]   Formation of massive stars by growing accretion rate [J].
Behrend, R ;
Maeder, A .
ASTRONOMY & ASTROPHYSICS, 2001, 373 (01) :190-198
[5]   PRESSURE-CONFINED CLUMPS IN MAGNETIZED MOLECULAR CLOUDS [J].
BERTOLDI, F ;
MCKEE, CF .
ASTROPHYSICAL JOURNAL, 1992, 395 (01) :140-157
[6]   Interferometric multi-wavelength (sub) millimeter continuum study of the young high-mass protocluster IRAS 05358+3543 [J].
Beuther, H. ;
Leurini, S. ;
Schilke, P. ;
Wyrowski, F. ;
Menten, K. M. ;
Zhang, Q. .
ASTRONOMY & ASTROPHYSICS, 2007, 466 (03) :1065-1076
[7]   Fragmentation and kinematics in high-mass star formation CORE-extension targeting two very young high-mass star-forming regions [J].
Beuther, H. ;
Gieser, C. ;
Suri, S. ;
Linz, H. ;
Klaassen, P. ;
Semenov, D. ;
Winters, J. M. ;
Henning, Th. ;
Soler, J. D. ;
Urquhart, J. S. ;
Syed, J. ;
Feng, S. ;
Moeller, T. ;
Beltran, M. T. ;
Sanchez-Monge, A. ;
Longmore, S. N. ;
Peters, T. ;
Ballesteros-Paredes, J. ;
Schilke, P. ;
Moscadelli, L. ;
Palau, A. ;
Cesaroni, R. ;
Lumsden, S. ;
Pudritz, R. ;
Wyrowski, F. ;
Kuiper, R. ;
Ahmadi, A. .
ASTRONOMY & ASTROPHYSICS, 2021, 649
[8]   High-mass protostellar candidates. II. Density structure from dust continuum and CS emission [J].
Beuther, H ;
Schilke, P ;
Menten, KM ;
Motte, F ;
Sridharan, TK ;
Wyrowski, F .
ASTROPHYSICAL JOURNAL, 2002, 566 (02) :945-965
[9]   Kolmogorov-Burgers model for star-forming turbulence [J].
Boldyrev, S .
ASTROPHYSICAL JOURNAL, 2002, 569 (02) :841-845
[10]   The R136 star cluster dissected with Hubble Space Telescope/STIS III. The most massive stars and their clumped winds [J].
Brands, Sarah A. ;
de Koter, Alex ;
Bestenlehner, Joachim M. ;
Crowther, Paul A. ;
Sundqvist, Jon O. ;
Puls, Joachim ;
Caballero-Nieves, Saida M. ;
Abdul-Masih, Michael ;
Driessen, Florian A. ;
Garcia, Miriam ;
Geen, Sam ;
Graefener, Goetz ;
Hawcroft, Calum ;
Kaper, Lex ;
Keszthelyi, Zsolt ;
Langer, Norbert ;
Sana, Hugues ;
Schneider, Fabian R. N. ;
Shenar, Tomer ;
Vink, Jorick S. .
ASTRONOMY & ASTROPHYSICS, 2022, 663