Mixed fractional Brownian motion

被引:228
作者
Cheridito, P [1 ]
机构
[1] ETH Zentrum, Dept Math, CH-8092 Zurich, Switzerland
关键词
equivalent measures; mixed fractional Brownian motion; semimartingale; weak semimartingale;
D O I
10.2307/3318626
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that the sum of a Brownian motion and a non-trivial multiple of an independent fractional Brownian motion with Hurst parameter H is an element of (0, 1] is not a semimartingale if H is an element of (0, 1/2) boolean OR (1/2, 3/4], that it is equivalent to a multiple of Brownian motion if H = 1/2 and equivalent to Brownian motion if H is an element of (3/4, 1]. As an application we discuss the price of a European call option on an asset driven by a linear combination of a Brownian motion and an independent fractional Brownian motion.
引用
收藏
页码:913 / 934
页数:22
相关论文
共 16 条
[1]  
[Anonymous], 1980, PROBABILITES POTENTI
[2]  
[Anonymous], 1970, SEMINAIRE PROBABILIT
[3]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[4]  
CHERIDITO P, 2000, UNPUB ARBITRAGE FRAC
[5]  
Cutland NJ, 1995, PROG PROBAB, V36, P327
[6]  
Golub G. H., 2013, Matrix Computations
[7]  
HIDA T, 1976, GAUSSIAN PROCESSES
[8]  
Ito K., 1944, Proc. Imp. Acad., V20, P519, DOI 10.3792/pia/1195572786
[9]  
Kolmogoroff AN, 1940, CR ACAD SCI URSS, V26, P115
[10]  
Lin S. J., 1995, STOCHASTICS STOCHAST, V55, P121