Representations of the vertex operator algebra VL2A4

被引:13
|
作者
Dong, Chongying [1 ]
Jiang, Cuipo [2 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
Vertex operator algebras; IRREDUCIBLE MODULES; FUSION RULES; CLASSIFICATION; V-L(+); RATIONALITY; INVARIANCE; M(1)(+);
D O I
10.1016/j.jalgebra.2012.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The rationality and C-2-cofiniteness of the orbifold vertex operator algebra V-L2(A4) are established and all the irreducible modules are constructed and classified. This is part of classification of rational vertex operator algebras with c = 1. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:76 / 96
页数:21
相关论文
共 50 条
  • [1] Fusion rules for the vertex operator algebra VL2A4
    Dong, Chongying
    Jiang, Cuipo
    Jiang, Qifen
    Jiao, Xiangyu
    Yu, Nina
    JOURNAL OF ALGEBRA, 2015, 423 : 476 - 505
  • [2] Rationality of vertex operator algebra VL+: higher rank
    Dong, Chongying
    Jiang, Cuipo
    Lin, Xingjun
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 : 799 - 826
  • [3] A characterization of the rational vertex operator algebra VZα+: II
    Dong, Chongying
    Jiang, Cuipo
    ADVANCES IN MATHEMATICS, 2013, 247 : 41 - 70
  • [4] C2-COFINITENESS OF THE VERTEX ALGEBRA VL+ WHEN L IS A NONDEGENERATE EVEN LATTICE
    Jitjankarn, Phichet
    Yamskulna, Gaywalee
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (12) : 4404 - 4415
  • [5] C2-cofiniteness of the vertex operator algebra VL+ when L is a rank one lattice
    Yamskulna, G
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (03) : 927 - 954
  • [6] 2-CYCLIC PERMUTATIONS OF LATTICE VERTEX OPERATOR ALGEBRAS
    Dong, Chongying
    Xu, Feng
    Yu, Nina
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) : 3207 - 3220
  • [7] A quasi-Hopf algebra for the triplet vertex operator algebra
    Creutzig, Thomas
    Gainutdinov, Azat M.
    Runkel, Ingo
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (03)
  • [8] Representations of Z2-orbifold of the parafermion vertex operator algebra K(sl2, k)
    Jiang, Cuipo
    Wang, Qing
    JOURNAL OF ALGEBRA, 2019, 529 : 174 - 195
  • [9] Classification of the vertex operator algebras VL+ of class S4
    Hashikawa, Tomonori
    Shimakura, Hiroki
    JOURNAL OF ALGEBRA, 2016, 456 : 151 - 181
  • [10] On classification of conformal vectors in vertex operator algebra and the vertex algebra automorphism group
    Moriwaki, Yuto
    JOURNAL OF ALGEBRA, 2020, 546 : 689 - 702