Statistical inference of semidefinite programming

被引:6
作者
Shapiro, Alexander [1 ]
机构
[1] Georgia Inst Technol, Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Semidefinite programming; Minimum trace factor analysis; Matrix completion problem; Minimum rank; Nondegeneracy; Statistical inference; Asymptotics;
D O I
10.1007/s10107-018-1250-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we consider covariance structural models with which we associate semidefinite programming problems. We discuss statistical properties of estimates of the respective optimal value and optimal solutions when the 'true' covariance matrix is estimated by its sample counterpart. The analysis is based on perturbation theory of semidefinite programming. As an example we consider asymptotics of the so-called minimum trace factor analysis. We also discuss the minimum rank matrix completion problem and its SDP counterparts.
引用
收藏
页码:77 / 97
页数:21
相关论文
共 22 条
[1]   Complementarity and nondegeneracy in semidefinite programming [J].
Alizadeh, F ;
Haeberly, JPA ;
Overton, ML .
MATHEMATICAL PROGRAMMING, 1997, 77 (02) :111-128
[2]  
[Anonymous], 2002, THESIS STANFORD U
[3]  
[Anonymous], 1985, Singularities of differentiable maps I
[4]  
Bentler P. M., 1972, Soc Sci Res, V1, P343, DOI 10.1016/0049-089X(72)90082-8
[5]  
BROWNE MW, 1974, S AFR STAT J, V8, P1
[6]   Exact Matrix Completion via Convex Optimization [J].
Candes, Emmanuel J. ;
Recht, Benjamin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (06) :717-772
[7]   RANK-SPARSITY INCOHERENCE FOR MATRIX DECOMPOSITION [J].
Chandrasekaran, Venkat ;
Sanghavi, Sujay ;
Parrilo, Pablo A. ;
Willsky, Alan S. .
SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (02) :572-596
[8]   Genericity Results in Linear Conic Programming-A Tour d'Horizon [J].
Duer, Mirjam ;
Jargalsaikhan, Bolor ;
Still, Georg .
MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (01) :77-94
[9]  
Golubitsky M., 1973, Graduate Texts in Mathematics
[10]  
Helmke U., 1996, OPTIMIZATION DYNAMIC