An effective approach for process parameter optimization in injection molding of plastic housing components

被引:18
作者
Deng, Wei-Jaw [1 ]
Chen, Chen-Tai [2 ]
Sun, Chin-Huang [3 ]
Chen, Wen-Chin [4 ]
Chen, Ching-Piao [5 ]
机构
[1] Chung Hua Univ, Grad Sch Business Adm, Hsinchu 30012, Taiwan
[2] Ta Hwa Inst Technol, Dept Comp Sci & Informat Engn, Hsinchu, Taiwan
[3] Leader Univ, Dept Ind Management, Tainan, Taiwan
[4] Chung Hua Univ, Grad Inst Technol Management, Hsinchu, Taiwan
[5] Ta Hwa Inst Technol, Dept Ind Engn & Management, Hsinchu, Taiwan
关键词
DFP method; injection molding; regression analysis; Taguchi's parameter design method;
D O I
10.1080/03602550802189142
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Determining optimal process parameter settings is critical work that extraordinarily influences productivity, quality, and costs of production. Previously, numerous engineers conventionally used trial-and-error processes or Taguchi's parameter design method to determine optimal process parameter settings. However, the application of these methods has some shortcomings. This research applies Taguchi's parameter design method, regression analysis, and the Davidon-Fletcher-Powell method to propose a novel approach for determining the optimal process parameter settings of plastic injection molding under single quality characteristic considerations. This novel approach can avoid shortcomings that originate from the application of trial-and-error processes or the conventional Taguchi parameter design method. The research results revealed that the proposed novel approach can effectively help engineers determine optimal process parameter settings and achieve competitive advantages of product quality and costs.
引用
收藏
页码:910 / 919
页数:10
相关论文
共 24 条
[11]   Application of artificial neural network and fuzzy logic in a case-based system for initial process parameter setting of injection molding [J].
Mok, SL ;
Kwong, CK .
JOURNAL OF INTELLIGENT MANUFACTURING, 2002, 13 (03) :165-176
[12]   Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm [J].
Ozcelik, B ;
Erzurumlu, T .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 171 (03) :437-445
[13]  
Peace GlenStuart., 1993, Taguchi methods : A hands-on approach
[14]   The revised DFP algorithm without exact line search [J].
Pu, DG ;
Tian, WW .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) :319-339
[15]   Multi response optimization of wire EDM operations using robust design of experiments [J].
Ramakrishnan, R. ;
Karunamoorthy, L. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 29 (1-2) :105-112
[16]   Multiobjective optimization of a plastic injection molding process [J].
Seaman, Chris M. ;
Desrochers, Alan A. ;
List, George F. .
IEEE Transactions on Control Systems Technology, 1994, 2 (03) :157-168
[17]   Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method [J].
Shen Changyu ;
Wang Lixia ;
Li Qian .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 183 (2-3) :412-418
[18]   Investigation of the effect of molding variables on sink marks of plastic injection molded parts using taguchi DOE technique [J].
Shen, Changyu ;
Wang, Lixia ;
Cao, Wei ;
Qian, Li .
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2007, 46 (03) :219-225
[19]   Optimization for injection molding process conditions of the refrigeratory top cover using combination method of artificial neural network and genetic algorithms [J].
Shen, Changyu ;
Wang, Lixia ;
Cao, Wei ;
Wu, Jinxing .
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2007, 46 (02) :105-112
[20]   Optimization of parameter design: an intelligent approach using neural network and simulated annealing [J].
Su, CT ;
Chang, HH .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (12) :1543-1549