Nonlinear diffusion control of defect turbulence in cubic-quintic complex Ginzburg-Landau equation

被引:3
|
作者
Tafo, J. B. Gonpe [1 ]
Nana, L. [2 ]
Kofane, T. C. [1 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mecan, Yaounde, Cameroon
[2] Univ Douala, Lab Phys Fondamentale, Grp Phenomenes Non Lineaires & Syst Complexes, UFD Phys Fondamentale & Sci Ingenieur, Douala, Cameroon
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2012年 / 127卷 / 07期
关键词
SPATIOTEMPORAL INTERMITTENCY; PATTERN-FORMATION; CONTROLLING CHAOS; SYSTEM; FEEDBACK; WAVES;
D O I
10.1140/epjp/i2012-12075-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The control of spatiotemporal chaos generated by traveling holes in spatially extended oscillatory media near a subcritical Hopf bifurcation is investigated. Analytical and numerical approaches are proposed for the purpose of this study. This work is done by using the nonlinear diffusion parameter control. We show that the unstable traveling hole in the one-dimensional cubic-quintic complex Ginzburg-Landau equation can be effectively stabilized in the chaotic regime.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Modulational instability and exact solutions of the discrete cubic-quintic Ginzburg-Landau equation
    Murali, R.
    Porsezian, K.
    Kofane, T. C.
    Mohamadou, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)
  • [42] Stability analysis of cavity solitons governed by the cubic-quintic Ginzburg-Landau equation
    Ding, Edwin
    Luh, Kyle
    Kutz, J. Nathan
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (06)
  • [43] Theoretical analysis of solutions of cubic-quintic Ginzburg-Landau equation with gain saturation
    Shtyrina, Olga, V
    Yarutkina, Irina A.
    Skidin, Anton S.
    Podivilov, Evgeny, V
    Fedorukt, Mikhail P.
    OPTICS EXPRESS, 2019, 27 (05) : 6711 - 6718
  • [44] Exact Solutions for 2D cubic-quintic Ginzburg-Landau equation
    Shi, Ye-qiong
    Dai, Zheng-de
    Han, Song
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [45] Stable transmission of solitons in the complex cubic-quintic Ginzburg-Landau equation with nonlinear gain and higher-order effects
    Yan, Yuanyuan
    Liu, Wenjun
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 171 - 176
  • [46] Exact solutions in nonlinearly coupled cubic-quintic complex Ginzburg-Landau equations
    Yomba, Emmanuel
    Zakeri, Gholam-Ali
    PHYSICS LETTERS A, 2013, 377 (3-4) : 148 - 157
  • [47] Recurrent solutions of the linearly coupled complex cubic-quintic Ginzburg-Landau equations
    Gao, Peng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2769 - 2794
  • [48] Modulational instability in linearly coupled complex cubic-quintic Ginzburg-Landau equations
    Porsezian, K.
    Murali, R.
    Malomed, Boris A.
    Ganapathy, R.
    CHAOS SOLITONS & FRACTALS, 2009, 40 (04) : 1907 - 1913
  • [49] An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: The perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg-Landau equation
    Miah, Md. Mamun
    Ali, H. M. Shahadat
    Akbar, M. Ali
    COGENT MATHEMATICS, 2016, 3
  • [50] Exact periodic solution family of the complex cubic-quintic Ginzburg-Landau equation with intrapulse Raman scattering
    Zhou, Yuqian
    Zhang, Qiuyan
    Li, Jibin
    Yu, Mengke
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (04)