Short Nonbinary Maximum Distance Separable Cycle Codes

被引:2
作者
Matuz, Balazs [1 ]
Liva, Gianluigi [1 ]
Paolini, Enrico [2 ,3 ]
机构
[1] German Aerosp Ctr DLR, Inst Commun & Nav, D-82234 Wessling, Germany
[2] Univ Bologna, Dept Elect Elect & Informat Engn, I-47521 Cesena, Italy
[3] CNIT, I-43124 Parma, Italy
关键词
Belief propagation; codes on graphs; coherent and non-coherent detection; concatenated codes; cycle codes; low-density parity-check codes; maximum distance separable codes; LDPC CODES; CAGES; PROPERTY; CHANNEL; DESIGN; GRAPHS; ERROR;
D O I
10.1109/LCOMM.2017.2787051
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This letter presents a class of very short nonbinary cycle codes that are maximum distance separable (MDS). It is proved that there is one and only one regular graph on which MDS cycle codes may be constructed and only for finite field orders larger than or equal to 5. An explicit construction method is described to generate MDS cycle codes based on the identified graph, for any admissible field order. The proposed codes admit efficient soft-decision decoding based on belief propagation, with small performance losses with respect to optimum maximum-likelihood decoding. When concatenated with an inner binary code, they yield short binary codes with low code rates representing a practical and effective solution for the protection of short messages, for example, critical packet headers in wireless communication systems.
引用
收藏
页码:454 / 457
页数:4
相关论文
共 50 条
  • [1] Nonbinary Quasi-Regular QC-LDPC Codes Derived From Cycle Codes
    Sulek, Wojciech
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (09) : 1705 - 1708
  • [2] Parallel Concatenation of Non-Binary Linear Random Fountain Codes with Maximum Distance Separable Codes
    Blasco, Francisco Lazaro
    Garrammone, Giuliano
    Liva, Gianluigi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (10) : 4067 - 4075
  • [3] Computing the Minimum Distance of Nonbinary LDPC Codes
    Liu, Lei
    Huang, Jie
    Zhou, Wuyang
    Zhou, Shengli
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (07) : 1753 - 1758
  • [4] Structure, Property, and Design of Nonbinary Regular Cycle Codes
    Huang, Jie
    Zhou, Shengli
    Willett, Peter
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (04) : 1060 - 1071
  • [5] Application of nonbinary LDPC cycle codes to MIMO channels
    Peng, Ronghui
    Chen, Rong-Rong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2008, 7 (06) : 2020 - 2026
  • [6] Maximum distance separable codes over Z2 x Z2s
    Samei, Karim
    Sadeghi, Sadegh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (07)
  • [7] Searching for Binary and Nonbinary Block and Convolutional LDPC Codes
    Bocharova, Irina E.
    Kudryashov, Boris D.
    Johannesson, Rolf
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 163 - 183
  • [8] Nonbinary LDPC cycle codes: efficient search,design, and code optimization
    Hengzhou XU
    Chao CHEN
    Min ZHU
    Baoming BAI
    Bo ZHANG
    Science China(Information Sciences), 2018, 61 (08) : 231 - 233
  • [9] Maximum distance separable codes over Z4 and Z2 x Z4
    Bilal, M.
    Borges, J.
    Dougherty, S. T.
    Fernandez-Cordoba, C.
    DESIGNS CODES AND CRYPTOGRAPHY, 2011, 61 (01) : 31 - 40
  • [10] Nonbinary Kite Codes: A Family of Nonbinary Rate-Compatible LDPC Codes
    Zhu, Min
    Wei, Yun
    Bai, Baoming
    Ma, Xiao
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1094 - 1098