Functional affine-isoperimetry and an inverse logarithmic Sobolev inequality

被引:54
作者
Artstein-Avidan, S. [2 ]
Klartag, B. [2 ]
Schuett, C. [3 ]
Werner, E. [1 ,4 ]
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Univ Kiel, Math Inst, D-24105 Kiel, Germany
[4] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
基金
美国国家科学基金会;
关键词
Affine isoperimetric inequality; Logarithmic Sobolev inequality;
D O I
10.1016/j.jfa.2012.02.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a functional version of the affine isoperimetric inequality for log-concave functions which may be interpreted as an inverse form of a logarithmic Sobolev inequality for entropy. A linearization of this inequality gives an inverse inequality to the Poincare inequality for the Gaussian measure. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4181 / 4204
页数:24
相关论文
共 25 条
[1]   The Santalo point of a function, and a functional form of the Santalo inequality [J].
Artstein-Avidan, S ;
Klartag, B ;
Milman, V .
MATHEMATIKA, 2004, 51 (101-02) :33-48
[2]  
Barthe F, 2006, REV MAT IBEROAM, V22, P993
[3]   On sharp Sobolev embedding and the logarithmic Sobolev inequality [J].
Beckner, W ;
Pearson, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :80-84
[5]  
Chafaï D, 2003, LECT NOTES MATH, V1801, P194
[6]   PARTIALLY ALTERNATE DERIVATION OF A RESULT OF NELSON [J].
FEDERBUSH, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (01) :50-+
[7]   Some functional forms of Blaschke-Santalo inequality [J].
Fradelizi, M. ;
Meyer, M. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (02) :379-395
[8]   Affine inequalities and radial mean bodies [J].
Gardner, RJ ;
Zhang, GY .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (03) :505-528
[9]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[10]   VARIANCE INEQUALITIES FOR FUNCTIONS OF GAUSSIAN VARIABLES [J].
HOUDRE, C ;
KAGAN, A .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (01) :23-30