Valence State Tuning of Gold Nanoparticles in the Dewetting Process: An X-ray Photoelectron Spectroscopy Study

被引:14
作者
Lanza, Gustavo [1 ]
Jimenez, Mawin J. Martinez [1 ]
Alvarez, Fernando [2 ]
Perez-Taborda, Jaime Andres [3 ,4 ]
Avila, Alba [1 ]
机构
[1] Univ los Andes, Ctr Microelect CMUA, Dept Ingn Elect & Elect, Bogota 111711, Colombia
[2] Univ Estadual Campinas, Inst Fis Gleb Wataghin IFGW, BR-13083970 Sao Paulo, Brazil
[3] Soc Colombiana Ingn Fis SCIF, Valledupar 111711, Colombia
[4] Univ Nacl Colombia Sede La Paz, Grp Nanoestruct & Fis Aplicada NANOUPAR, La Paz 202010, Colombia
基金
巴西圣保罗研究基金会;
关键词
ELECTRONIC-STRUCTURE; SURFACE; XPS;
D O I
10.1021/acsomega.2c04259
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Gold nanoparticles (AuNPs) are commonly synthesized using the citrate reduction method, reducing Au3+ into Au1+ ions and facilitating the disproportionation of aurous species to Au atoms (Au-0). This method results on citrate-capped AuNPs with valence single states Au-0. Here, we report a methodology that allows obtaining AuNPs by the dewetting process with three different valence states (Au3+, Au1+, and Au-0), which can be fine-tuned with ion bombardment. The chemical surface changes and binding state of the NPs were investigated using core-level X-ray photoelectron spectroscopy (XPS). This is achieved by recording high-resolution Au 4f XPS spectra as a function of ion dose exposure. The results obtained show a time-dependent tuning effect on the Au valence states using low-energy 200 V acceleration voltage Ar+ ion bombardment, and the valence state conversion kinetics involves the reduction from Au3+ and Au1+ to Au-0. Proper control of the reduction in the valence states is critical in surface engineering for controlling catalytic reactions.
引用
收藏
页码:34521 / 34527
页数:7
相关论文
共 37 条
[1]   Surface plasmon resonance in gold nanoparticles: a review [J].
Amendola, Vincenzo ;
Pilot, Roberto ;
Frasconi, Marco ;
Marago, Onofrio M. ;
Iati, Maria Antonia .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (20)
[2]   Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application [J].
Asadi, Somayeh ;
Bianchi, Leonardo ;
De Landro, Martina ;
Korganbayev, Sanzhar ;
Schena, Emiliano ;
Saccomandi, Paola .
JOURNAL OF BIOPHOTONICS, 2021, 14 (02)
[3]  
Avila A., 2022, Superintendencia de Industria y Comercio, Patent No. [NC2021/000297, 2021000297]
[4]   Silicon Microchannel-Driven Raman Scattering Enhancement to Improve Gold Nanorod Functions as a SERS Substrate toward Single-Molecule Detection [J].
Bar, Jaciara ;
de Barros, Anerise ;
de Camargo, Davi H. S. ;
Pereira, Mariane P. ;
Merces, Leandro ;
Shimizu, Flavio Makoto ;
Sigoli, Fernando A. ;
Bof Bufon, Carlos Cesar ;
Mazali, Italo Odone .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (30) :36482-36491
[5]   Surface and electronic structure of titanium dioxide photocatalysts [J].
Bilmes, SA ;
Mandelbaum, P ;
Alvarez, F ;
Victoria, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (42) :9851-9858
[6]   XPS study of supported gold catalysts:: the role of Au0 and Au+δ species as active sites [J].
Casaletto, MP ;
Longo, A ;
Martorana, A ;
Prestianni, A ;
Venezia, AM .
SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) :215-218
[7]  
Clarke C, 2018, NANOSCALE, V10, P6270, DOI [10.1039/c7nr08979a, 10.1039/C7NR08979A]
[8]   Ultraviolet and Infrared luminescent Au-rich nanostructure growth in SiO2 by burrowing and inverse Oswald ripening process [J].
Datta, D. P. ;
Chettah, A. ;
Maiti, Arpan ;
Satpati, B. ;
Sahoo, P. K. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Cold plasma treatment of catalytic materials: a review [J].
Di, Lanbo ;
Zhang, Jingsen ;
Zhang, Xiuling ;
Wang, Hongyang ;
Li, Hong ;
Li, Yanqin ;
Bu, Decai .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (33)
[10]   Stability and reactivity of gold compounds - From fundamental aspects to applications [J].
Durovic, Mirjana D. ;
Bugarcic, Zivadin D. ;
van Eldik, Rudi .
COORDINATION CHEMISTRY REVIEWS, 2017, 338 :186-206