The BACON-EEM algorithm for multivariate outlier detection in incomplete survey data

被引:0
|
作者
Beguin, Cedric [1 ]
Hulliger, Beat [2 ]
机构
[1] Univ Neuchatel, CH-2010 Neuchatel, Switzerland
[2] Univ Appl Sci NW Switzerland, CH-4600 Olten, Switzerland
关键词
forward search method; outlier detection; multivariate data; missing value; sampling; robustness; E-M algorithm;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
With complete multivariate data the BACON algorithm (Billor, Hadi and Vellemann 2000) yields a robust estimate of the covariance matrix. The corresponding Mahalanobis distance may be used for multivariate outlier detection. When items are missing the EM algorithm is a convenient way to estimate the covariance matrix at each iteration step of the BACON algorithm. In finite population sampling the EM algorithm must be enhanced to estimate the covariance matrix of the population rather than of the sample. A version of the EM algorithm for survey data following a multivariate normal model, the EEM algorithm (Estimated Expectation Maximization), is proposed. The combination of the two algorithms, the BACON-EEM algorithm, is applied to two datasets and compared with alternative methods.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [1] Multivariate outlier detection in incomplete survey data:: the epidemic algorithm and transformed rank correlations
    Béguin, C
    Hulliger, B
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2004, 167 : 275 - 294
  • [2] Detection of multivariate outliers in business survey data with incomplete information
    Valentin Todorov
    Matthias Templ
    Peter Filzmoser
    Advances in Data Analysis and Classification, 2011, 5 : 37 - 56
  • [3] Detection of multivariate outliers in business survey data with incomplete information
    Todorov, Valentin
    Templ, Matthias
    Filzmoser, Peter
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2011, 5 (01) : 37 - 56
  • [4] Outlier detection for multivariate categorical data
    Puig, Xavier
    Ginebra, Josep
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2018, 34 (07) : 1400 - 1412
  • [5] Outlier detection in multivariate hydrologic data
    Kirk, Adam J.
    McCuen, Richard H.
    JOURNAL OF HYDROLOGIC ENGINEERING, 2008, 13 (07) : 641 - 646
  • [6] Outlier detection in multivariate analytical chemical data
    Egan, WJ
    Mogan, SL
    ANALYTICAL CHEMISTRY, 1998, 70 (11) : 2372 - 2379
  • [7] A Novel Outlier Detection Method for Multivariate Data
    Almardeny, Yahya
    Boujnah, Noureddine
    Cleary, Frances
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (09) : 4052 - 4062
  • [8] Multivariate Functional Data Visualization and Outlier Detection
    Dai, Wenlin
    Genton, Marc G.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) : 923 - 934
  • [9] A Novel Approach for Outlier Detection in Multivariate Data
    Afzal, Saima
    Afzal, Ayesha
    Amin, Muhammad
    Saleem, Sehar
    Ali, Nouman
    Sajid, Muhammad
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [10] A Multivariate Outlier Detection Algorithm for Wireless Sensor Networks
    Titouna, Chafiq
    Nait-Abdesselam, Farid
    Khokhar, Ashfaq
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,