Dual Adversarial Attention Mechanism for Unsupervised Domain Adaptive Medical Image Segmentation

被引:28
作者
Chen, Xu [1 ,2 ]
Kuang, Tianshu [3 ]
Deng, Hannah [3 ]
Fung, Steve H. [4 ]
Gateno, Jaime [1 ,2 ,5 ]
Xia, James J. [1 ,2 ,5 ]
Yap, Pew-Thian [1 ,2 ]
机构
[1] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Biomed Res Imaging Ctr BRIC, Chapel Hill, NC 27599 USA
[3] Houston Methodist Res Inst, Dept Oral & Maxillofacial Surg, Houston, TX 77030 USA
[4] Houston Methodist Hosp, Dept Radiol, Houston, TX 77030 USA
[5] Cornell Univ, Weill Med Coll, Dept Surg Oral & Maxillofacial Surg, New York, NY 10065 USA
关键词
Image segmentation; Annotations; Semantics; Feature extraction; Task analysis; Medical diagnostic imaging; Adaptation models; Attention mechanism; unsupervised domain adaptation; adversarial learning; medical image segmentation; CONVERSION;
D O I
10.1109/TMI.2022.3186698
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Domain adaptation techniques have been demonstrated to be effective in addressing label deficiency challenges in medical image segmentation. However, conventional domain adaptation based approaches often concentrate on matching global marginal distributions between different domains in a class-agnostic fashion. In this paper, we present a dual-attention domain-adaptative segmentation network (DADASeg-Net) for cross-modality medical image segmentation. The key contribution of DADASeg-Net is a novel dual adversarial attention mechanism, which regularizes the domain adaptation module with two attention maps respectively from the space and class perspectives. Specifically, the spatial attention map guides the domain adaptation module to focus on regions that are challenging to align in adaptation. The class attention map encourages the domain adaptation module to capture class-specific instead of class-agnostic knowledge for distribution alignment. DADASeg-Net shows superior performance in two challenging medical image segmentation tasks.
引用
收藏
页码:3445 / 3453
页数:9
相关论文
共 50 条
[1]   A Scalable Room Occupancy Prediction with Transferable Time Series Decomposition of CO2 Sensor Data [J].
Arief-Ang, Irvan B. ;
Hamilton, Margaret ;
Salim, Flora D. .
ACM TRANSACTIONS ON SENSOR NETWORKS, 2018, 14 (3-4)
[2]   DA-HOC: Semi-Supervised Domain Adaptation for Room Occupancy Prediction using CO2 Sensor Data [J].
Arief-Ang, Irvan B. ;
Salim, Flora D. ;
Hamilton, Margaret .
BUILDSYS'17: PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILT ENVIRONMENTS, 2017,
[3]   Harmonizing Transferability and Discriminability for Adapting Object Detectors [J].
Chen, Chaoqi ;
Zheng, Zebiao ;
Ding, Xinghao ;
Huang, Yue ;
Dou, Qi .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :8866-8875
[4]   Progressive Feature Alignment for Unsupervised Domain Adaptation [J].
Chen, Chaoqi ;
Xie, Weiping ;
Huang, Wenbing ;
Rong, Yu ;
Ding, Xinghao ;
Huang, Yue ;
Xu, Tingyang ;
Huang, Junzhou .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :627-636
[5]   Unsupervised Bidirectional Cross-Modality Adaptation via Deeply Synergistic Image and Feature Alignment for Medical Image Segmentation [J].
Chen, Cheng ;
Dou, Qi ;
Chen, Hao ;
Qin, Jing ;
Heng, Pheng Ann .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (07) :2494-2505
[6]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306
[7]   Reverse Attention for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Hu, Xuelong .
COMPUTER VISION - ECCV 2018, PT IX, 2018, 11213 :236-252
[8]   Diverse data augmentation for learning image segmentation with cross-modality annotations [J].
Chen, Xu ;
Lian, Chunfeng ;
Wang, Li ;
Deng, Hannah ;
Kuang, Tianshu ;
Fung, Steve H. ;
Gateno, Jaime ;
Shen, Dinggang ;
Xia, James J. ;
Yap, Pew-Thian .
MEDICAL IMAGE ANALYSIS, 2021, 71
[9]   Anatomy-Regularized Representation Learning for Cross-Modality Medical Image Segmentation [J].
Chen, Xu ;
Lian, Chunfeng ;
Wang, Li ;
Deng, Hannah ;
Kuang, Tianshu ;
Fung, Steve ;
Gateno, Jaime ;
Yap, Pew-Thian ;
Xia, James J. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (01) :274-285
[10]   One-Shot Generative Adversarial Learning for MRI Segmentation of Craniomaxillofacial Bony Structures [J].
Chen, Xu ;
Lian, Chunfeng ;
Wang, Li ;
Deng, Hannah ;
Fung, Steve H. ;
Nie, Dong ;
Thung, Kim-Han ;
Yap, Pew-Thian ;
Gateno, Jaime ;
Xia, James J. ;
Shen, Dinggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (03) :787-796