Ultra-large chemical libraries for the discovery of high-affinity peptide binders

被引:81
|
作者
Quartararo, Anthony J. [1 ]
Gates, Zachary P. [1 ]
Somsen, Bente A. [2 ,3 ]
Hartrampf, Nina [1 ]
Ye, Xiyun [1 ]
Shimada, Arisa [4 ]
Kajihara, Yasuhiro [4 ]
Ottmann, Christian [2 ,3 ]
Pentelute, Bradley L. [1 ,5 ,6 ,7 ]
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] Eindhoven Univ Technol, Dept Biomed Engn, Lab Chem Biol, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Inst Complex Mol Syst, POB 513, NL-5600 MB Eindhoven, Netherlands
[4] Osaka Univ, Grad Sch Sci, Dept Chem, 1 1 Machikaneyama, Toyonaka, Osaka 5600043, Japan
[5] MIT, Koch Inst Integrat Canc Res, 500 Main St, Cambridge, MA 02142 USA
[6] MIT, Ctr Environm Hlth Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[7] Broad Inst MIT & Harvard, 415 Main St, Cambridge, MA 02142 USA
关键词
MASS-SPECTROMETRY; COMBINATORIAL LIBRARIES; STRUCTURAL BASIS; PROTEIN; SELECTION; BINDING; LIGANDS; MDM2; IDENTIFICATION; INHIBITION;
D O I
10.1038/s41467-020-16920-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
High-diversity genetically-encoded combinatorial libraries (10(8)-10(13) members) are a rich source of peptide-based binding molecules, identified by affinity selection. Synthetic libraries can access broader chemical space, but typically examine only -10(6) compounds by screening. Here we show that in-solution affinity selection can be interfaced with nano-liquid chromatography-tandem mass spectrometry peptide sequencing to identify binders from fully randomized synthetic libraries of 10(8) members-a 100-fold gain in diversity over standard practice. To validate this approach, we show that binders to a monoclonal antibody are identified in proportion to library diversity, as diversity is increased from 10(6) -10(8). These results are then applied to the discovery of p53-like binders to MDM2, and to a family of 3-19 nM-affinity, alpha/beta-peptide-based binders to 14-3-3. An X-ray structure of one of these binders in complex with 14-3-3 sigma is determined, illustrating the role of beta-amino acids in facilitating a key binding contact.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reversible Cyclic Peptide Libraries for the Discovery of Affinity Ligands
    Menegatti, Stefano
    Ward, Kevin Lawrence
    Naik, Amith Dattatray
    Kish, William Stanley
    Blackburn, Robert Kevin
    Carbonell, Ruben Guillermo
    ANALYTICAL CHEMISTRY, 2013, 85 (19) : 9229 - 9237
  • [2] Automated affinity selection for rapid discovery of peptide binders
    Zhang, Genwei
    Li, Chengxi
    Quartararo, Anthony J.
    Loas, Andrei
    Pentelute, Bradley L.
    CHEMICAL SCIENCE, 2021, 12 (32) : 10817 - 10824
  • [3] High-affinity peptide biomaterials
    Kim, Myriel
    Avrutin, Rebecca
    Iranzo, Sean Chryz
    Cui, Honggang
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2025, 34
  • [4] Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking
    Gentile, Francesco
    Yaacoub, Jean Charle
    Gleave, James
    Fernandez, Michael
    Ton, Anh-Tien
    Ban, Fuqiang
    Stern, Abraham
    Cherkasov, Artem
    NATURE PROTOCOLS, 2022, 17 (03) : 672 - +
  • [5] De novo design of high-affinity binders of bioactive helical peptides
    Torres, Susana Vazquez
    Leung, Philip J. Y.
    Venkatesh, Preetham
    Lutz, Isaac D.
    Hink, Fabian
    Huynh, Huu-Hien
    Becker, Jessica
    Yeh, Andy Hsien-Wei
    Juergens, David
    Bennett, Nathaniel R.
    Hoofnagle, Andrew N.
    Huang, Eric
    MacCoss, Michael J.
    Exposit, Marc
    Lee, Gyu Rie
    Bera, Asim K.
    Kang, Alex
    De La Cruz, Joshmyn
    Levine, Paul M.
    Li, Xinting
    Lamb, Mila
    Gerben, Stacey R.
    Murray, Analisa
    Heine, Piper
    Korkmaz, Elif Nihal
    Nivala, Jeff
    Stewart, Lance
    Watson, Joseph L.
    Rogers, Joseph M.
    Baker, David
    NATURE, 2024, 626 (7998) : 435 - 442
  • [6] Conversion of Low-Affinity Peptides to High-Affinity Peptide Binders by Using a β-Hairpin Scaffold-Assisted Approach
    Kim, Sunghyun
    Kim, Daejin
    Lee, Yonghyun
    Jeon, Hyungsu
    Lee, Byung-Heon
    Jon, Sangyong
    CHEMBIOCHEM, 2015, 16 (01) : 43 - 46
  • [7] HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries
    Popov, Konstantin I.
    Wellnitz, James
    Maxfield, Travis
    Tropsha, Alexander
    MOLECULAR INFORMATICS, 2024, 43 (01)
  • [8] Discovery of High-Affinity Inhibitors of the BPTF Bromodomain
    Lu, Tian
    Lu, Haibo
    Duan, Zhe
    Wang, Jun
    Han, Jie
    Xiao, Senhao
    Chen, HuanHuan
    Jiang, Hao
    Chen, Yu
    Yang, Feng
    Chen, Dongying
    Lin, Jin
    Li, Bo
    Jiang, Hualiang
    Chen, Kaixian
    Lu, Wenchao
    Lin, Hua
    Luo, Cheng
    JOURNAL OF MEDICINAL CHEMISTRY, 2021, 64 (16) : 12075 - 12088
  • [9] Advances in the discovery of new chemotypes through ultra-large library docking
    Potlitz, F.
    Link, A.
    Schulig, L.
    EXPERT OPINION ON DRUG DISCOVERY, 2023, 18 (03) : 303 - 313
  • [10] Targeting ion channels with ultra-large library screening for hit discovery
    Melancon, Kortney
    Pliushcheuskaya, Palina
    Meiler, Jens
    Kuenze, Georg
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2024, 16