Combining CNNs with Transformer for Multimodal 3D MRI Brain Tumor Segmentation

被引:3
|
作者
Dobko, Mariia [1 ]
Kolinko, Danylo-Ivan [1 ]
Viniavskyi, Ostap [1 ]
Yelisieiev, Yurii [1 ]
机构
[1] Ukrainian Catholic Univ, Machine Learning Lab, Lvov, Ukraine
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II | 2022年 / 12963卷
关键词
3D Segmentation; Visual transformers; MRI; Self-supervised Pretraining; Ensembling;
D O I
10.1007/978-3-031-09002-8_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply an ensemble of modified TransBTS, nnU-Net, and a combination of both for the segmentation task of the BraTS 2021 challenge. We change the original architecture of the TransBTS model by adding Squeeze-and-Excitation blocks, increasing the number of CNN layers, replacing positional encoding in the Transformer block with a learnable Multilayer Perceptron (MLP) embeddings, which makes Transformer adjustable to any input size during inference. With these modifications, we can improve TransBTS performance largely. Inspired by a nnU-Net framework, we decided to combine it with our modified TransBTS by changing the architecture inside nnU-Net to our custom model. On the Validation set of BraTS 2021, the ensemble of these approaches achieves 0.8496, 0.8698, 0.9256 Dice score and 15.72, 11.057, 3.374 HD95 for enhancing tumor, tumor core, and whole tumor, correspondingly. On test set we get Dice score 0.8789, 0.8759, 0.9279, and HD95: 10.426, 17.203, 4.93. Our code is publicly available.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 50 条
  • [41] Segmentation of Brain Tumor from MRI Images
    Asthana, Pallavi
    Vashisth, Sharda
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 262 - 266
  • [42] A systematic evaluation of learning rate policies in training CNNs for brain tumor segmentation
    Bukhari, Syed Talha
    Mohy-ud-Din, Hassan
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (10)
  • [43] Joint transformer architecture in brain 3D MRI classification: its application in Alzheimer's disease classification
    Alp, Sait
    Akan, Taymaz
    Bhuiyan, Md. Shenuarin
    Disbrow, Elizabeth A.
    Conrad, Steven A.
    Vanchiere, John A.
    Kevil, Christopher G.
    Bhuiyan, Mohammad A. N.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] 3D Brain Image Segmentation Using 3D Tiled Convolution Neural Networks
    Haque, Md Mahibul
    Ria, Jobeda Khanam
    Al Mannan, Fahad
    Majumder, Sadman
    Uddin, Reaz
    Abed, Mahjabeen Tamanna
    Alam, Md Ashraful
    PATTERN RECOGNITION AND PREDICTION XXXV, 2024, 13040
  • [45] Nature-Inspired Level Set Segmentation Model for 3D-MRI Brain Tumor Detection
    Hassen, Oday Ali
    Abter, Sarmad Omar
    Abdulhussein, Ansam A.
    Darwish, Saad M.
    Ibrahim, Yasmine M.
    Sheta, Walaa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 961 - 981
  • [46] A knowledge-based system for brain tumor segmentation using only 3D FLAIR images
    Amirmoezzi, Yalda
    Salehi, Sina
    Parsaei, Hossein
    Kazemi, Kamran
    Jahromi, Amin Torabi
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2019, 42 (02) : 529 - 540
  • [47] A low cost approach for brain tumor segmentation based on intensity modeling and 3D Random Walker
    Kanas, Vasileios G.
    Zacharaki, Evangelia I.
    Davatzikos, Christos
    Sgarbas, Kyriakos N.
    Megalooikonomou, Vasileios
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 22 : 19 - 30
  • [48] MMCFormer: Missing Modality Compensation Transformer for Brain Tumor Segmentation
    Karimijafarbigloo, Sanaz
    Azad, Reza
    Kazerouni, Amirhossein
    Ebadollahi, Saeed
    Merhof, Dorit
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1144 - 1162
  • [49] Segmentation of brain tumour in 3D Intraoperative Ultrasound imaging
    Angel-Raya, Erick
    Chalopin, Claire
    Avina-Cervantes, Juan Gabriel
    Cruz-Aceves, Ivan
    Wein, Wolfgang
    Lindner, Dirk
    INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, 2021, 17 (06)
  • [50] 3D MRI segmentation and 3D circumferential resection margin evaluation for a standard rectal cancer assessment
    Lorenzon, L.
    Bini, F.
    Quatrale, M.
    Biondi, A.
    Persiani, R.
    Di Pietropaolo, M.
    Landolfi, F.
    Iannicelli, E.
    Marinozzi, F.
    Balducci, G.
    D'Ugo, D.
    GIORNALE DI CHIRURGIA, 2018, 39 (03): : 152 - 157