Combining CNNs with Transformer for Multimodal 3D MRI Brain Tumor Segmentation

被引:3
|
作者
Dobko, Mariia [1 ]
Kolinko, Danylo-Ivan [1 ]
Viniavskyi, Ostap [1 ]
Yelisieiev, Yurii [1 ]
机构
[1] Ukrainian Catholic Univ, Machine Learning Lab, Lvov, Ukraine
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II | 2022年 / 12963卷
关键词
3D Segmentation; Visual transformers; MRI; Self-supervised Pretraining; Ensembling;
D O I
10.1007/978-3-031-09002-8_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply an ensemble of modified TransBTS, nnU-Net, and a combination of both for the segmentation task of the BraTS 2021 challenge. We change the original architecture of the TransBTS model by adding Squeeze-and-Excitation blocks, increasing the number of CNN layers, replacing positional encoding in the Transformer block with a learnable Multilayer Perceptron (MLP) embeddings, which makes Transformer adjustable to any input size during inference. With these modifications, we can improve TransBTS performance largely. Inspired by a nnU-Net framework, we decided to combine it with our modified TransBTS by changing the architecture inside nnU-Net to our custom model. On the Validation set of BraTS 2021, the ensemble of these approaches achieves 0.8496, 0.8698, 0.9256 Dice score and 15.72, 11.057, 3.374 HD95 for enhancing tumor, tumor core, and whole tumor, correspondingly. On test set we get Dice score 0.8789, 0.8759, 0.9279, and HD95: 10.426, 17.203, 4.93. Our code is publicly available.
引用
收藏
页码:232 / 241
页数:10
相关论文
共 50 条
  • [31] The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
    Menze, Bjoern H.
    Jakab, Andras
    Bauer, Stefan
    Kalpathy-Cramer, Jayashree
    Farahani, Keyvan
    Kirby, Justin
    Burren, Yuliya
    Porz, Nicole
    Slotboom, Johannes
    Wiest, Roland
    Lanczi, Levente
    Gerstner, Elizabeth
    Weber, Marc-Andre
    Arbel, Tal
    Avants, Brian B.
    Ayache, Nicholas
    Buendia, Patricia
    Collins, D. Louis
    Cordier, Nicolas
    Corso, Jason J.
    Criminisi, Antonio
    Das, Tilak
    Delingette, Herve
    Demiralp, Cagatay
    Durst, Christopher R.
    Dojat, Michel
    Doyle, Senan
    Festa, Joana
    Forbes, Florence
    Geremia, Ezequiel
    Glocker, Ben
    Golland, Polina
    Guo, Xiaotao
    Hamamci, Andac
    Iftekharuddin, Khan M.
    Jena, Raj
    John, Nigel M.
    Konukoglu, Ender
    Lashkari, Danial
    Mariz, Jose Antonio
    Meier, Raphael
    Pereira, Sergio
    Precup, Doina
    Price, Stephen J.
    Raviv, Tammy Riklin
    Reza, Syed M. S.
    Ryan, Michael
    Sarikaya, Duygu
    Schwartz, Lawrence
    Shin, Hoo-Chang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 1993 - 2024
  • [32] MRI segmentation fusion for brain tumor detection
    Cabria, Ivan
    Gondra, Iker
    INFORMATION FUSION, 2017, 36 : 1 - 9
  • [33] 3D appearance model for hippocampus segmentation from MRI
    Klemencic, J
    Pluim, JPW
    Viergever, MA
    Schnack, HG
    Valencic, V
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 425 - 436
  • [34] A review on brain tumor segmentation of MRI images
    Wadhwa, Anjali
    Bhardwaj, Anuj
    Verma, Vivek Singh
    MAGNETIC RESONANCE IMAGING, 2019, 61 : 247 - 259
  • [35] Neuro-TransUNet: A comprehensive transformer-based architecture for precise segmentation of stroke lesions in 3D MRI
    Nouman, Muhammad
    Mabrok, Mohamed
    Rashed, Essam A.
    9TH INTERNATIONAL CONFERENCE ON MULTIMEDIA AND IMAGE PROCESSING, ICMIP 2024, 2024, : 152 - 156
  • [36] 3D Multimodal Simulation of Image Acquisition by X-Ray and MRI for Validation of Seedling Measurements with Segmentation Algorithms
    Benoit, Landry
    Semaan, Georges
    Franconi, Florence
    Belin, Etienne
    Chapeau-Blondeau, Francois
    Demilly, Didier
    Rousseau, David
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT IV, 2015, 8928 : 131 - 139
  • [37] SEResU-Net for Multimodal Brain Tumor Segmentation
    Yan, Chengdong
    Ding, Jurong
    Zhang, Hui
    Tong, Ke
    Hua, Bo
    Shi, Shaolong
    IEEE ACCESS, 2022, 10 : 117033 - 117044
  • [38] MULTI-CLASS BRAIN TUMOR SEGMENTATION VIA 3D AND 2D NEURAL NETWORKS
    Pnev, Sergey
    Groza, Vladimir
    Tuchinov, Bair
    Amelina, Evgeniya
    Pavlovskiy, Evgeniy
    Tolstokulakov, Nikolay
    Amelin, Mihail
    Golushko, Sergey
    Letyagin, Andrey
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [39] 3D hemisphere-based convolutional neural network for whole-brain MRI segmentation
    Yee, Evangeline
    Ma, Da
    Popuri, Karteek
    Chen, Shuo
    Lee, Hyunwoo
    Chow, Vincent
    Ma, Cydney
    Wang, Lei
    Beg, Mirza Faisal
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2022, 95
  • [40] Robust Segmentation of 3D Brain MRI Images in Cross Datasets by Integrating Supervised and Unsupervised Learning
    Wang, Xiaoxue
    Guo, Chengan
    Zhou, Xiangjun
    2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 194 - 201