Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential

被引:2
作者
Gan, Canlin [1 ]
Xiao, Ting [1 ]
Zhang, Qiongfen [1 ]
机构
[1] Guilin Univ Technol, Coll Sci, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Klein-Gordon-Maxwell system; Super-quadratic condition; Variational methods; Nonhomogeneous; Solutions; GROUND-STATE SOLUTIONS; SOLITARY WAVES; POSITIVE SOLUTIONS; EQUATIONS;
D O I
10.1186/s13662-020-02634-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following system: {-Delta u+lambda A(x)u-K(x)(2 omega+phi)phi u=f(x,u)+h(x),x is an element of R3,Delta phi=K(x)(omega+phi)u2,x is an element of R3, where lambda >= 1 is a parameter, omega>0 is a constant and the potential A is sign-changing. Under the classic Ambrosetti-Rabinowitz condition and other suitable conditions, nontrivial solutions are obtained via the linking theorem and Ekeland's variational principle. Especially speaking, we use a super-quadratic condition to replace the 4-superlinear condition which is usually used to show the existence of nontrivial solutions in many references. Our results improve the previous results in the literature.
引用
收藏
页数:16
相关论文
共 30 条
[1]  
[Anonymous], 2018, PROC ROM ACAD MATH P
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[4]  
Baleanu D, 2018, P ROMANIAN ACAD A, V19, P447
[5]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[6]   Solitons and the electromagnetic field [J].
Benci, V ;
Fortunato, D ;
Masiello, A ;
Pisani, L .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :73-102
[7]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[8]   The nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) :6065-6072
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]   Positive ground state solutions for the critical Klein-Gordon-Maxwell system with potentials [J].
Carriao, Paulo C. ;
Cunha, Patricia L. ;
Miyagaki, Olimpio H. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (10) :4068-4078