An analytic asymmetric-piston model for the impact of mode-1 shell asymmetry on ICF implosions

被引:77
作者
Hurricane, O. A. [1 ]
Casey, D. T. [1 ]
Landen, O. [1 ]
Kritcher, A. L. [1 ]
Nora, R. [1 ]
Patel, P. K. [1 ]
Gaffney, J. A. [1 ]
Humbird, K. D. [1 ]
Field, J. E. [1 ]
Kruse, M. K. G. [1 ]
Peterson, J. L. [1 ]
Spears, B. K. [1 ]
机构
[1] Lawrence Livermore Natl Lab, POB 808,L-472, Livermore, CA 94550 USA
关键词
Shells; (structures); -; Explosions;
D O I
10.1063/5.0001335
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
For many years, low mode asymmetry in inertially confined fusion (ICF) implosions has been recognized as a potential performance limiting factor, but analysis has been limited to using simulations and searching for data correlations. Herein, an analytically solvable model based upon the simple picture of an asymmetric piston is presented. Asymmetry of the shell driving the implosion, as opposed to asymmetry in the hot-spot, is key to the model. The model provides a unifying framework for the action of mode-1 shell asymmetry and the resulting connections between various diagnostic signatures. A key variable in the model is the shell asymmetry fraction, f, which is related to the areal density variation of the shell surrounding the hot-spot. It is shown that f is simply related to the observed hot-spot mode-1 velocity and to the concept of residual energy in an implosion. The model presented in this paper yields explicit expressions for the hot-spot diameter, stagnation pressure, hot-spot energy, inertial confinement-time, Lawson parameter, hot-spot temperature, and fusion yield under the action of mode-1 asymmetry. Agreement is found between the theory scalings when compared to ICF implosion data from the National Ignition Facility and to large ensembles of detailed simulations, making the theory a useful tool for interpreting data. The theory provides a basis for setting tolerable limits on asymmetry.
引用
收藏
页数:13
相关论文
共 55 条
[1]  
[Anonymous], 2015, BRIT J ANAESTH, V115, pii34, DOI [10.1093/bja/aev375, DOI 10.1103/PHYSREVLETT.115.055001]
[2]   Hydrodynamic studies of high gain shock ignition targets: effect of low- to intermediate-mode asymmetries [J].
Atzeni, Stefano ;
Schiavi, Angelo ;
Antonelli, Luca ;
Serpi, Arianna .
EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (11)
[3]   High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility [J].
Baker, K. L. ;
Thomas, C. A. ;
Casey, D. T. ;
Khan, S. ;
Spears, B. K. ;
Nora, R. ;
Woods, T. ;
Milovich, J. L. ;
Berger, R. L. ;
Strozzi, D. ;
Clark, D. ;
Hohenberger, M. ;
Hurricane, O. A. ;
Callahan, D. A. ;
Landen, O. L. ;
Bachmann, B. ;
Benedetti, R. ;
Bionta, R. ;
Celliers, P. M. ;
Fittinghoff, D. ;
Goyon, C. ;
Grim, G. ;
Hatarik, R. ;
Izumi, N. ;
Johnson, M. Gatu ;
Kyrala, G. ;
Ma, T. ;
Millot, M. ;
Nagel, S. R. ;
Pak, A. ;
Patel, P. K. ;
Turnbull, D. ;
Volegov, P. L. ;
Yeamans, C. .
PHYSICAL REVIEW LETTERS, 2018, 121 (13)
[4]   Relativistic calculation of fusion product spectra for thermonuclear plasmas [J].
Ballabio, L ;
Källne, J ;
Gorini, G .
NUCLEAR FUSION, 1998, 38 (11) :1723-1735
[5]   Alpha Heating and Burning Plasmas in Inertial Confinement Fusion [J].
Betti, R. ;
Christopherson, A. R. ;
Spears, B. K. ;
Nora, R. ;
Bose, A. ;
Howard, J. ;
Woo, K. M. ;
Edwards, M. J. ;
Sanz, J. .
PHYSICAL REVIEW LETTERS, 2015, 114 (25)
[6]   Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement [J].
Betti, R. ;
Chang, P. Y. ;
Spears, B. K. ;
Anderson, K. S. ;
Edwards, J. ;
Fatenejad, M. ;
Lindl, J. D. ;
McCrory, R. L. ;
Nora, R. ;
Shvarts, D. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[7]   THE RAYLEIGH-TAYLOR INSTABILITY IN DIRECT-DRIVE LASER FUSION [J].
BODNER, SE ;
EMERY, MH ;
GARDNER, JH .
PLASMA PHYSICS AND CONTROLLED FUSION, 1987, 29 (10A) :1333-1342
[8]   Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA [J].
Bose, A. ;
Betti, R. ;
Mangino, D. ;
Woo, K. M. ;
Patel, D. ;
Christopherson, A. R. ;
Gopalaswamy, V. ;
Mannion, O. M. ;
Regan, S. P. ;
Goncharov, V. N. ;
Edgell, D. H. ;
Forrest, C. J. ;
Frenje, J. A. ;
Johnson, M. Gatu ;
Glebov, V. Yu ;
Igumenshchev, I. V. ;
Knauer, J. P. ;
Marshall, F. J. ;
Radha, P. B. ;
Shah, R. ;
Stoeckl, C. ;
Theobald, W. ;
Sangster, T. C. ;
Shvarts, D. ;
Campbell, E. M. .
PHYSICS OF PLASMAS, 2018, 25 (06)
[9]   The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics [J].
Bose, A. ;
Betti, R. ;
Shvarts, D. ;
Woo, K. M. .
PHYSICS OF PLASMAS, 2017, 24 (10)
[10]   Higher velocity, high-foot implosions on the National Ignition Facility laser [J].
Callahan, D. A. ;
Hurricane, O. A. ;
Hinkel, D. E. ;
Doeppner, T. ;
Ma, T. ;
Park, H. -S. ;
Garcia, M. A. Barrios ;
Hopkins, L. F. Berzak ;
Casey, D. T. ;
Cerjan, C. J. ;
Dewald, E. L. ;
Dittrich, T. R. ;
Edwards, M. J. ;
Haan, S. W. ;
Hamza, A. V. ;
Kline, J. L. ;
Knauer, J. P. ;
Kritcher, A. L. ;
Landen, O. L. ;
LePape, S. ;
MacPhee, A. G. ;
Milovich, J. L. ;
Nikroo, A. ;
Pak, A. E. ;
Patel, P. K. ;
Rygg, J. R. ;
Ralph, J. E. ;
Salmonson, J. D. ;
Spears, B. K. ;
Springer, P. T. ;
Tommasini, R. ;
Benedetti, L. R. ;
Bionta, R. M. ;
Bond, E. J. ;
Bradley, D. K. ;
Caggiano, J. A. ;
Field, J. E. ;
Fittinghoff, D. N. ;
Frenje, J. ;
Johnson, M. Gatu ;
Grim, G. P. ;
Hatarik, R. ;
Merrill, F. E. ;
Nagel, S. R. ;
Izumi, N. ;
Khan, S. F. ;
Town, R. P. J. ;
Sayre, D. B. ;
Volegov, P. ;
Wilde, C. H. .
PHYSICS OF PLASMAS, 2015, 22 (05)