A new insight to the matrices extraction in a MOESP type subspace identification algorithm

被引:3
|
作者
Delgado, Catarina J. M.
Dos Santos, P. Lopes
Martins De Carvalho, J. L.
机构
[1] Univ Porto, Fac Econ, ISR Porto, P-4200464 Oporto, Portugal
[2] Univ Porto, Fac Engn, ISR Porto, P-4200465 Oporto, Portugal
关键词
subspace identification methods; parameter estimation; state-space models; discrete-time linear systems;
D O I
10.1080/00207720600784486
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we analyse the estimates of the matrices produced by the non-biased deterministic-stochastic subspace identification algorithms (NBDSSI) proposed by Van Overschee and De Moor ( 1996). First, an alternate expression is derived for the A and C estimates. It is shown that the Chiuso and Picci result ( Chiuso and Picci 2004) stating that the A and C estimates delivered by this algorithm robust version and by the Verhaegen's MOESP (Verhaegen and Dewilde 1992a, Verhaegen and Dewilde 1992b, Verhaegen 1993, Verhaegen 1994) are equal, can be obtained from this expression. An alternative approach for the estimation of matrices B and D in subspace identification is also described. It is shown that the least squares approach for the estimation of these matrices estimation can be just expressed as an orthogonal projection of the future outputs on a lower dimension subspace in the orthogonal complement of the column space of the extended observability matrix. Since this subspace has a dimension equal to the number of outputs, a simpler and numerically more efficient ( but equally accurate) new subspace algorithm is provided.
引用
收藏
页码:565 / 574
页数:10
相关论文
共 50 条
  • [1] Novel recursive MOESP subspace identification algorithm based on forgetting factor
    College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
    不详
    Kong Zhi Li Lun Yu Ying Yong, 2009, 1 (69-72):
  • [2] Robust MOESP type algorithm with improved efficiency on the estimation of input matrices
    Delgado, CJM
    dos Santos, PL
    SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 2554 - 2559
  • [3] Analysis of the asymptotic properties of the MOESP type of subspace algorithms
    Bauer, D
    Jansson, M
    AUTOMATICA, 2000, 36 (04) : 497 - 509
  • [4] Iterative MOESP type algorithm for discrete time variant system identification
    Tamariz, ADR
    Bottura, CR
    Barreto, G
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL & 13TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1 AND 2, 2005, : 399 - 404
  • [5] N4SID and MOESP Subspace Identification Methods
    Jamaludin, I. W.
    Wahab, N. A.
    Khalid, N. S.
    Sahlan, S.
    Ibrahim, Z.
    Rahmat, M. F.
    2013 IEEE 9TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS (CSPA), 2013, : 140 - 145
  • [6] Closed-loop MOESP subspace model identification with parametrisable disturbances
    van der Veen, Gijs
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 2813 - 2818
  • [7] PO-MOESP subspace identification of Directed Acyclic Graphs with unknown topology
    Torres, Patricio
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    AUTOMATICA, 2015, 53 : 60 - 71
  • [8] New approach to the estimation of the input matrices in subspace identification algorithms
    Delgado, CJM
    dos Santos, PL
    de Carvalho, JLM
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 2207 - 2212
  • [9] N4SID and MOESP Algorithms to Highlight the Ill-conditioning into Subspace Identification
    Hachicha, Slim
    Kharrat, Maher
    Chaari, Abdessattar
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2014, 11 (01) : 30 - 38
  • [10] N4SID and MOESP algorithms to highlight the ill-conditioning into subspace identification
    Hachicha, S. (slim.hachicha@yahoo.fr), 1600, Chinese Academy of Sciences (11):