Convex Hull of Extreme Points in Flat Riemannian Manifolds

被引:0
作者
Mirzaie, Reza [1 ]
Rezaie, Omid [1 ]
机构
[1] Imam Khomeini Int Univ IKIU, Fac Sci, Dept Pure Math, Qazvin, Iran
来源
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 2022年 / 15卷 / 02期
关键词
Flat Reimannian manifold; convex subset; convex hull; extreme point; SETS;
D O I
10.36890/IEJG.1046707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that convex hull of extreme points of a closed strongly convex subset of a compact flat Riemannian manifold is equal to the subset itself.
引用
收藏
页码:178 / 182
页数:5
相关论文
共 50 条
[31]   CHELM: Convex Hull based Extreme Learning Machine for salient object detection [J].
Vivek Kumar Singh ;
Nitin Kumar .
Multimedia Tools and Applications, 2021, 80 :13535-13558
[32]   CHELM: Convex Hull based Extreme Learning Machine for salient object detection [J].
Singh, Vivek Kumar ;
Kumar, Nitin .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) :13535-13558
[33]   A Total Order Heuristic-Based Convex Hull Algorithm for Points in the Plane [J].
Gomes, Abel J. P. .
COMPUTER-AIDED DESIGN, 2016, 70 :153-160
[34]   Marching squares-based approach to finding the convex hull of a planar set of points [J].
Yue, Y ;
Maple, C .
PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, :1700-1703
[35]   Convex Hull of Imprecise Points in o(n log n) Time after Preprocessing [J].
Ezra, Esther ;
Mulzer, Wolfgang .
COMPUTATIONAL GEOMETRY (SCG 11), 2011, :11-20
[36]   Extreme Points of Matrix Convex Sets, Free Spectrahedra, and Dilation Theory [J].
Eric Evert ;
J. William Helton ;
Igor Klep ;
Scott McCullough .
The Journal of Geometric Analysis, 2018, 28 :1373-1408
[37]   Extreme Points of Matrix Convex Sets, Free Spectrahedra, and Dilation Theory [J].
Evert, Eric ;
Helton, J. William ;
Klep, Igor ;
McCullough, Scott .
JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (02) :1373-1408
[38]   Extended convex hull [J].
Fukuda, K ;
Liebling, TM ;
Lütolf, C .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2001, 20 (1-2) :13-23
[39]   IMPLEMENTATION OF BOTTLENECK NON CROSS MATCHING FOR A SET OF CONVEX POINTS USING CONVEX HULL AND DEVELOPMENT OF AN IMAGE SEARCH ALGORITHIM [J].
Sarkar, Aratrika ;
Sarkar, Anirban ;
Das Gupta, Sauvik .
2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND APPLICATIONS (ICHPCA), 2014,
[40]   CONVEX_HULL - A Pascal program for determining the convex hull for planar sets [J].
Yamamoto, JK .
COMPUTERS & GEOSCIENCES, 1997, 23 (07) :725-738