Computer-Aided Diagnosis of Parkinson's Disease Using Enhanced Probabilistic Neural Network

被引:136
作者
Hirschauer, Thomas J. [1 ,2 ]
Adeli, Hojjat [3 ,4 ,5 ,6 ,7 ,8 ,9 ]
Buford, John A. [10 ]
机构
[1] Ohio State Univ, Coll Med, Neurosci Grad Program, Columbus, OH 43210 USA
[2] Ohio State Univ, Coll Med, Med Scientist Training Program, Columbus, OH 43210 USA
[3] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[4] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[5] Ohio State Univ, Dept Neurol, Columbus, OH 43210 USA
[6] Ohio State Univ, Dept Neurosci, Columbus, OH 43210 USA
[7] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[8] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
[9] Ohio State Univ, Biophys Grad Program, Columbus, OH 43210 USA
[10] Ohio State Univ, Sch Hlth & Rehabil Sci, Div Phys Therapy, Columbus, OH 43210 USA
关键词
Computer-aided diagnosis; Parkinson's disease; Enhanced probabilistic neural networks; WAVELET-CHAOS METHODOLOGY; EEG-BASED DIAGNOSIS; SWEDDS PATIENTS; ALZHEIMERS-DISEASE; BRAIN; MODELS; SCANS; CLASSIFICATION; IDENTIFICATION; COMPUTATION;
D O I
10.1007/s10916-015-0353-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Early and accurate diagnosis of Parkinson's disease (PD) remains challenging. Neuropathological studies using brain bank specimens have estimated that a large percentages of clinical diagnoses of PD may be incorrect especially in the early stages. In this paper, a comprehensive computer model is presented for the diagnosis of PD based on motor, non-motor, and neuroimaging features using the recently-developed enhanced probabilistic neural network (EPNN). The model is tested for differentiating PD patients from those with scans without evidence of dopaminergic deficit (SWEDDs) using the Parkinson's Progression Markers Initiative (PPMI) database, an observational, multi-center study designed to identify PD biomarkers for diagnosis and disease progression. The results are compared to four other commonly-used machine learning algorithms: the probabilistic neural network (PNN), support vector machine (SVM), k-nearest neighbors (k-NN) algorithm, and classification tree (CT). The EPNN had the highest classification accuracy at 92.5 % followed by the PNN (91.6 %), k-NN (90.8 %) and CT (90.2 %). The EPNN exhibited an accuracy of 98.6 % when classifying healthy control (HC) versus PD, higher than any previous studies.
引用
收藏
页数:12
相关论文
共 58 条
[41]   Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy [J].
Salvatore, C. ;
Cerasa, A. ;
Castiglioni, I. ;
Gallivanone, F. ;
Augimeri, A. ;
Lopez, M. ;
Arabia, G. ;
Morelli, M. ;
Gilardi, M. C. ;
Quattrone, A. .
JOURNAL OF NEUROSCIENCE METHODS, 2014, 222 :230-237
[42]   Wavelet Coherence Model for Diagnosis of Alzheimer Disease [J].
Sankari, Ziad ;
Adeli, Hojjat ;
Adeli, Anahita .
CLINICAL EEG AND NEUROSCIENCE, 2012, 43 (04) :268-278
[43]   Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer's disease [J].
Sankari, Ziad ;
Adeli, Hojjat ;
Adeli, Anahita .
CLINICAL NEUROPHYSIOLOGY, 2011, 122 (05) :897-906
[44]   Probabilistic neural networks for diagnosis of Alzheimer's disease using conventional and wavelet coherence [J].
Sankari, Ziad ;
Adeli, Hojjat .
JOURNAL OF NEUROSCIENCE METHODS, 2011, 197 (01) :165-170
[45]   Patients with adult-onset dystonic tremor resembling parkinsonian tremor have scans without evidence of Dopaminergic deficit (SWEDDs) [J].
Schneider, Susanne A. ;
Edwards, Mark J. ;
Mir, Pablo ;
Cordivari, Carla ;
Hooker, Juzar ;
Dickson, John ;
Quinn, Niall ;
Bhatia, Kailash P. .
MOVEMENT DISORDERS, 2007, 22 (15) :2210-2215
[46]   Distinguishing SWEDDs Patients with Asymmetric Resting Tremor from Parkinson's Disease: A Clinical and Electrophysiological Study [J].
Schwingenschuh, Petra ;
Ruge, Diane ;
Edwards, Mark J. ;
Terranova, Carmen ;
Katschnig, Petra ;
Carrillo, Fatima ;
Silveira-Moriyama, Laura ;
Schneider, Susanne A. ;
Kaegi, Georg ;
Palomar, Francisco J. ;
Talelli, Penelope ;
Dickson, John ;
Lees, Andrew J. ;
Quinn, Niall ;
Mir, Pablo ;
Rothwell, John C. ;
Bhatia, Kailash P. .
MOVEMENT DISORDERS, 2010, 25 (05) :560-569
[47]  
Siddique N., 2013, Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing, DOI DOI 10.1002/9781118534823
[48]   Olfaction in patients with suspected parkinsonism and scans without evidence of dopaminergic deficit (SWEDDs) [J].
Silveira-Moriyama, L. ;
Schwingenschuh, P. ;
O'Donnell, A. ;
Schneider, S. A. ;
Mir, P. ;
Carrillo, F. ;
Terranova, C. ;
Petrie, A. ;
Grosset, D. G. ;
Quinn, N. P. ;
Bhatia, K. P. ;
Lees, A. J. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2009, 80 (07) :744-748
[49]   PROBABILISTIC NEURAL NETWORKS [J].
SPECHT, DF .
NEURAL NETWORKS, 1990, 3 (01) :109-118
[50]   A Structural Impairment Detection System Using Competitive Arrays of Artificial Neural Networks [J].
Story, Brett A. ;
Fry, Gary T. .
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2014, 29 (03) :180-190