Control of the mass and energy dynamics of polybenzimidazole-membrane fuel cells

被引:18
|
作者
Zenith, Federico [1 ]
Skogestad, Sigurd [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Chem Engn, N-7491 Trondheim, Norway
关键词
Fuel cell; Dynamics; Control; MODEL; SENSOR; SIMULATION; SYSTEM;
D O I
10.1016/j.jprocont.2008.06.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic modes related to mass and energy of a high-temperature proton-exchange-membrane fuel cell are investigated. For a particular configuration, three lumped-parameters dynamic equations are considered to represent hydrogen pressure in the anode, oxygen fraction in the cathode, and stack temperature. For each of these, a simple controller algorithm is developed. These algorithms are tested against a standard driving cycle for vehicles, and are found to be able to maintain the necessary conditions for the fuel cell stack to operate. It is possible to control temperature by using only air cooling, without significant additional requirements on air flow manipulation. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:415 / 432
页数:18
相关论文
共 50 条
  • [31] Preparation and characterization of fluorine-containing polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel cells
    Chuang, Shih-Wei
    Hsu, Steve Lien-Chung
    Yang, Ming-Lun
    EUROPEAN POLYMER JOURNAL, 2008, 44 (07) : 2202 - 2206
  • [32] Power Management and Control of a Hybrid Electric Vehicle Based on Photovoltaic, Fuel Cells, and Battery Energy Sources
    Mohamed, Naoui
    Aymen, Flah
    Altamimi, Abdullah
    Khan, Zafar A.
    Lassaad, Sbita
    SUSTAINABILITY, 2022, 14 (05)
  • [33] Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells
    Chang, Zhihong
    Pu, Hongting
    Wan, Decheng
    Liu, Lu
    Yuan, Junjie
    Yang, Zhenglong
    POLYMER DEGRADATION AND STABILITY, 2009, 94 (08) : 1206 - 1212
  • [34] A semi-flexible polybenzimidazole with enhanced comprehensive performance for high-temperature proton exchange membrane fuel cells
    You, Yamei
    Deng, Xinyang
    Liu, Qian
    Hou, Yanjun
    Miao, Shoulei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 78 : 879 - 888
  • [35] Ether-Free Polybenzimidazole Bearing Pendant Imidazolium Groups for Alkaline Anion Exchange Membrane Fuel Cells Application
    Lin, Bencai
    Xu, Fei
    Su, Yue
    Han, Juanjuan
    Zhu, Zhijie
    Chu, Fuqiang
    Ren, Yurong
    Zhu, Liang
    Ding, Jianning
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 1089 - 1098
  • [36] Modeling of the mass transfer in proton-exchange-membrane fuel cells
    Grigor'ev, SA
    Alanakyan, YR
    Fateev, VN
    Rusanov, AVD
    DOKLADY PHYSICAL CHEMISTRY, 2002, 382 (4-6) : 31 - 34
  • [37] Modeling of the Mass Transfer in Proton-Exchange-Membrane Fuel Cells
    S. A. Grigor'ev
    Yu. R. Alanakyan
    V. N. Fateev
    V. D. Rusanov
    Doklady Physical Chemistry, 2002, 382 : 31 - 34
  • [38] Energy Management and Operation Control of Fuel Cells in Grid-Tied Operation
    de Aguiar, Cassius R.
    de Aguiar, Kelen M. F. R.
    Bastos, Renan F.
    Leal, Wagner C.
    Godinho, Marcelo O.
    Fuzato, Guilherme H. F.
    Fagundes, Thales A.
    Machado, Ricardo Q.
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2022, 33 (02) : 471 - 482
  • [39] Temperature control strategy for polymer electrolyte fuel cells
    Qi, Yuanxin
    Li, Xiufei
    Li, Shian
    Li, Tingshuai
    Espinoza-Andaluz, Mayken
    Tunestal, Per
    Andersson, Martin
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (06) : 4352 - 4365
  • [40] Optimal Concentration Control for Direct Methanol Fuel Cells
    Zenith, Federico
    Na, Youngseung
    Krewer, Ulrike
    IFAC PAPERSONLINE, 2015, 48 (08): : 722 - 727