A Perception-Based Interpretation of the Kernel-Based Object Tracking

被引:0
|
作者
Bruni, Vittoria [1 ]
Vitulano, Domenico [2 ]
机构
[1] Univ Roma La Sapienza, Dept SBAI, Via A Scarpa 16, I-00161 Rome, Italy
[2] CNR, Ist per Applicaz Calcolo M Pico, I-00185 Rome, Italy
关键词
INFORMATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the advantages of using simple rules of human perception in object tracking. Specifically, human visual perception (HVP) will be used in the definition of both target features and the similarity metric to be used for detecting the target in subsequent frames. Luminance and contrast will play a crucial role in the definition of target features, whereas recent advances in the relations between some classical concepts of information theory and the way human eye codes image information will be used in the definition of the similarity metric. The use of HVP rules in a well known object tracking algorithm, allows us to increase its efficacy in following the target and to considerably reduce the computational cost of the whole tracking process. Some tests also show the stability and the robustness of a perception-based object tracking algorithm also in the presence of other moving elements or target occlusion for few subsequent frames.
引用
收藏
页码:596 / 607
页数:12
相关论文
共 50 条
  • [1] An Improvement of Kernel-Based Object Tracking Based on Human Perception
    Bruni, Vittoria
    Vitulano, Domenico
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2014, 44 (11): : 1474 - 1485
  • [2] Kernel-based object tracking
    Comaniciu, D
    Ramesh, V
    Meer, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) : 564 - 577
  • [3] Kernel-based Bayesian filtering for object tracking
    Han, BY
    Zhu, Y
    Comaniciu, D
    Davis, L
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 227 - 234
  • [4] An Improved Adaptive Kernel-based Object Tracking
    Liu Zhenghua
    Han Li
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 7588 - 7594
  • [5] Scale Invariant Kernel-Based Object Tracking
    Li, Peng
    Cai, Zhipeng
    Wang, Hanyun
    Sun, Zhuo
    Yi, Yunhui
    Wang, Cheng
    Li, Jonathan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 252 - 255
  • [6] Robust Kernel-Based Object Tracking with Multiple Kernel Centers
    Zhang, Shuo
    Bar-Shalom, Yaakov
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1014 - 1021
  • [7] Approximate Bayesian methods for kernel-based object tracking
    Zivkovic, Zoran
    Cemgil, Ali Taylan
    Krose, Ben
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2009, 113 (06) : 743 - 749
  • [8] A novel algebraic method for kernel-based object tracking
    Khakpour, F.
    Ardeshir, G.
    COMPUTERS & ELECTRICAL ENGINEERING, 2014, 40 (05) : 1482 - 1497
  • [9] An adaptive implementation of the kernel-based object tracking method
    Weng Muyun
    He Mingyi
    Zhang Yifan
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 2, PROCEEDINGS, 2006, : 354 - +
  • [10] Improved kernel-based object tracking under occluded scenarios
    Namboodiri, Vinay P.
    Ghorawat, Amit
    Chaudhuri, Subhasis
    COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 2006, 4338 : 504 - +