Mixed methods using standard conforming finite elements

被引:13
|
作者
Li, Jichun [1 ]
Arbogast, Todd [2 ]
Huang, Yunqing [3 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
基金
美国国家科学基金会;
关键词
Mixed finite element; Elliptic; Parabolic; Hyperbolic; Inf-sup condition; 2ND-ORDER ELLIPTIC PROBLEMS; HYPERBOLIC-EQUATIONS; ORDER; PRESSURE; APPROXIMATIONS; ACCURACY;
D O I
10.1016/j.cma.2008.10.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the mixed finite element method (MFEM) for solving a second order elliptic problem with a lowest order term, as might arise in the simulation of single-phase flow in porous media. We find that traditional mixed finite element spaces are not necessary when a positive lowest order (i.e., reaction) term is present. Hence, we propose to use standard conforming finite elements Q(k) x (Q(k))(d) on rectangles or P(k) x (P(k))(d) on simplices to solve for both the pressure and velocity field in d dimensions. The price we pay is that we have only sub-optimal order error estimates. With a delicate superconvergence analysis, we find some improvement for the simplest pair Q(k) x (Q(k))(d) with any k >= 1, or for P(1) x (P(1))(d), when the mesh is uniform and the solution has one extra order of regularity. We also prove similar results for both parabolic and second order hyperbolic problems. Numerical results using Q(1) x (Q(1))(2) and P(1) x (P(1))(2) are presented in support of our analysis. These observations allow us to simplify the implementation of the MFEM, especially for higher order approximations, as might arise in an hp-adaptive procedure. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:680 / 692
页数:13
相关论文
共 50 条
  • [1] Conforming Rectangular Mixed Finite Elements for Elasticity
    Chen, Shao-Chun
    Wang, Ya-Na
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 47 (01) : 93 - 108
  • [2] The simplest conforming anisotropic rectangular and cubic mixed finite elements for elasticity
    Chen, Shao-chun
    Sun, Yan-ping
    Zhao, Ji-kun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 292 - 303
  • [3] Residual-based a posteriori error estimates for symmetric conforming mixed finite elements for linear elasticity problems
    Chen, Long
    Hu, Jun
    Huang, Xuehai
    Man, Hongying
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 973 - 992
  • [4] CONFORMING MIXED TRIANGULAR PRISM ELEMENTS FOR THE LINEAR ELASTICITY PROBLEM
    Hu, Jun
    Ma, Rui
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2018, 15 (1-2) : 228 - 242
  • [5] MIXED MULTISCALE FINITE ELEMENT METHODS USING LIMITED GLOBAL INFORMATION
    Aarnes, J. E.
    Efendiev, Y.
    Jiang, L.
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02) : 655 - 676
  • [6] Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions
    S.-Y. Yi
    CALCOLO, 2005, 42 : 115 - 133
  • [7] Guaranteed Lower Eigenvalue Bounds for Steklov Operators Using Conforming Finite Element Methods
    Nakano, Taiga
    Li, Qin
    Yue, Meiling
    Liu, Xuefeng
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (02) : 487 - 502
  • [8] EFFICIENT ASSEMBLY OF H(div) AND H(curl) CONFORMING FINITE ELEMENTS
    Rognes, Marie E.
    Kirby, Robert C.
    Logg, Anders
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) : 4130 - 4151
  • [9] Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space
    Bause, Markus
    Radu, Florin A.
    Koecher, Uwe
    NUMERISCHE MATHEMATIK, 2017, 137 (04) : 773 - 818
  • [10] A Simple Conforming Mixed Finite Element for Linear Elasticity on Rectangular Grids in Any Space Dimension
    Jun Hu
    Hongying Man
    Shangyou Zhang
    Journal of Scientific Computing, 2014, 58 : 367 - 379