Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides

被引:14
作者
Liao, Jiali [1 ]
Marko, Matthew [2 ,3 ]
Li, Xiujian [1 ]
Jia, Hui [1 ]
Liu, Ju [1 ]
Tan, Yizhou [4 ]
Yang, Jiankun [1 ]
Zhang, Yuanda [1 ]
Tang, Wusheng [1 ]
Yu, Mingbin [5 ]
Lo, Guo-Qiang [5 ]
Kwong, Dim-Lee [5 ]
Wong, Chee Wei
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Columbia Univ, Opt Nanostruct Lab, New York, NY 10027 USA
[3] Joint Base McGuire Dix Lakehurst, Navy Air Warfare Ctr, Aircraft Div NAWCAD, Lakehurst, NJ 08733 USA
[4] Natl Univ Def Technol, Coll Mechatron & Automat, Changsha 410073, Hunan, Peoples R China
[5] Inst Microelect, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
SELF-PHASE-MODULATION; PROPAGATION; COMPRESSION; CONVERSION; LIGHT;
D O I
10.1364/OL.38.004401
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate the evolution of picosecond pulses in silicon nanowire waveguides by sum frequency generation cross-correlation frequency-resolved optical gating (SFG-XFROG) and nonlinear Schrodinger equation (NLSE) modeling. Due to the unambiguous temporal direction and ultrahigh sensitivity of the SFG-XFROG, which enable observation of the pulse accelerations, the captured pulses' temporal and spectral characteristics showed remarkable agreement with NLSE predictions. The temporal intensity redistribution of the pulses through the silicon nanowire waveguide for various input pulse energies is analyzed experimentally and numerically to demonstrate the nonlinear contributions of self-phase modulation, two-photon absorption, and free carriers. It indicates that free carrier absorption dominates the pulse acceleration. The model for pulse evolution during propagation through arbitrary lengths of silicon nanowire waveguides is established by NLSE, in support of chip-scale optical interconnects and signal processing. (C) 2013 Optical Society of America
引用
收藏
页码:4401 / 4404
页数:4
相关论文
共 24 条
[1]   All-optical control of light on a silicon chip [J].
Almeida, VR ;
Barrios, CA ;
Panepucci, RR ;
Lipson, M .
NATURE, 2004, 431 (7012) :1081-1084
[2]   Self-phase-modulation induced spectral broadening in silicon waveguides [J].
Boyraz, O ;
Indukuri, T ;
Jalali, B .
OPTICS EXPRESS, 2004, 12 (05) :829-834
[3]   Temporal solitons and pulse compression in photonic crystal waveguides [J].
Colman, P. ;
Husko, C. ;
Combrie, S. ;
Sagnes, I. ;
Wong, C. W. ;
De Rossi, A. .
NATURE PHOTONICS, 2010, 4 (12) :862-868
[4]   Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires [J].
Dai, Daoxin ;
Bowers, John E. .
OPTICS EXPRESS, 2011, 19 (11) :10940-10949
[5]   Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration [J].
Driscoll, Jeffrey B. ;
Ophir, Noam ;
Grote, Richard R. ;
Dadap, Jerry I. ;
Panoiu, Nicolae C. ;
Bergman, Keren ;
Osgood, Richard M., Jr. .
OPTICS EXPRESS, 2012, 20 (08) :9227-9242
[6]   Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments [J].
Dudley, JM ;
Gu, X ;
Xu, L ;
Kimmel, M ;
Zeek, E ;
O'Shea, P ;
Trebino, R ;
Coen, S ;
Windeler, RS .
OPTICS EXPRESS, 2002, 10 (21) :1215-1221
[7]   Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires [J].
Foster, MA ;
Gaeta, AL .
OPTICS EXPRESS, 2005, 13 (18) :6848-6855
[8]   Nonlinear optics in photonic nanowires [J].
Foster, Mark A. ;
Turner, Amy C. ;
Lipson, Michal ;
Gaeta, Alexander L. .
OPTICS EXPRESS, 2008, 16 (02) :1300-1320
[9]   Ultra-high-speed wavelength conversion in a silicon photonic chip [J].
Hu, Hao ;
Ji, Hua ;
Galili, Michael ;
Pu, Minhao ;
Peucheret, Christophe ;
Mulvad, Hans Christian H. ;
Yvind, Kresten ;
Hvam, Jorn M. ;
Jeppesen, Palle ;
Oxenlowe, Leif K. .
OPTICS EXPRESS, 2011, 19 (21) :19886-19894
[10]   Ultrafast all-optical modulation in GaAs photonic crystal cavities [J].
Husko, Chad ;
De Rossi, Alfredo ;
Combrie, Sylvain ;
Tran, Quynh Vy ;
Raineri, Fabrice ;
Wong, Chee Wei .
APPLIED PHYSICS LETTERS, 2009, 94 (02)