ReFine: Re-randomization before Fine-tuning for Cross-domain Few-shot Learning

被引:4
|
作者
Oh, Jaehoon [1 ]
Kim, Sungnyun [2 ]
Ho, Namgyu [2 ]
Kim, Jin-Hwa [3 ]
Song, Hwanjun [3 ]
Yun, Se-Young [2 ]
机构
[1] KAIST DS, Daejeon, South Korea
[2] KAIST AI, Seoul, South Korea
[3] NAVER AI Lab, Sungnam, South Korea
来源
PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022 | 2022年
关键词
cross-domain; few-shot; transfer learning; re-randomization;
D O I
10.1145/3511808.3557681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cross-domain few-shot learning (CD-FSL), where there are few target samples under extreme differences between source and target domains, has recently attracted huge attention. Recent studies on CD-FSL generally focus on transfer learning based approaches, where a neural network is pre-trained on popular labeled source domain datasets and then transferred to target domain data. Although the labeled datasets may provide suitable initial parameters for the target data, the domain difference between the source and target might hinder fine-tuning on the target domain. This paper proposes a simple yet powerful method that re-randomizes the parameters fitted on the source domain before adapting to the target data. The re-randomization resets source-specific parameters of the source pre-trained model and thus facilitates fine-tuning on the target domain, improving few-shot performance.
引用
收藏
页码:4359 / 4363
页数:5
相关论文
共 50 条
  • [1] A fine-tuning prototypical network for few-shot cross-domain fault diagnosis
    Zhong, Jianhua
    Gu, Kairong
    Jiang, Haifeng
    Liang, Wei
    Zhong, Shuncong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (11)
  • [2] Toward Better Generalization of Cross-Domain Few-Shot Classification in Tibetan Character With Contrastive Learning and Meta Fine-Tuning
    Bao, Xun
    Wang, Weilan
    Wang, Xiaojuan
    Zhao, Guanzhong
    Li, Huarui
    Liu, Meiling
    IEEE ACCESS, 2024, 12 : 134439 - 134452
  • [3] Relevance equilibrium network for cross-domain few-shot learning
    Ji, Zhong
    Kong, Xiangyu
    Wang, Xuan
    Liu, Xiyao
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (02)
  • [4] Experiments in cross-domain few-shot learning for image classification
    Wang, Hongyu
    Gouk, Henry
    Fraser, Huon
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2023, 53 (01) : 169 - 191
  • [5] A Comparison of Machine Learning Methods for Cross-Domain Few-Shot Learning
    Wang, Hongyu
    Gouk, Henry
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    AI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12576 : 445 - 457
  • [6] Dual Adaptive Representation Alignment for Cross-Domain Few-Shot Learning
    Zhao Y.
    Zhang T.
    Li J.
    Tian Y.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11720 - 11732
  • [7] Cross-domain few-shot learning based on feature adaptive distillation
    Dingwei Zhang
    Hui Yan
    Yadang Chen
    Dichao Li
    Chuanyan Hao
    Neural Computing and Applications, 2024, 36 : 4451 - 4465
  • [8] Multimodal Cross-Domain Few-Shot Learning for Egocentric Action Recognition
    Hatano, Masashi
    Hachiuma, Ryo
    Fujii, Ryo
    Saito, Hideo
    COMPUTER VISION - ECCV 2024, PT XXXIII, 2025, 15091 : 182 - 199
  • [9] Task context transformer and GCN for few-shot learning of cross-domain
    Li, Pengfang
    Liu, Fang
    Jiao, Licheng
    Li, Lingling
    Chen, Puhua
    Li, Shuo
    NEUROCOMPUTING, 2023, 548
  • [10] Attentive fine-grained recognition for cross-domain few-shot classification
    Liangbing Sa
    Chongchong Yu
    Xianqin Ma
    Xia Zhao
    Tao Xie
    Neural Computing and Applications, 2022, 34 : 4733 - 4746