EINSTEIN MANIFOLDS AS YANG-MILLS INSTANTONS

被引:12
|
作者
Oh, John J. [1 ]
Yang, Hyun Seok [2 ,3 ]
机构
[1] Natl Inst Math Sci, Div Comp Sci Math, Taejon 305340, South Korea
[2] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea
[3] Sogang Univ, Ctr Quantum Spacetime, Seoul 121741, South Korea
基金
新加坡国家研究基金会;
关键词
Einstein manifold; Yang-Mills instanton; self-duality;
D O I
10.1142/S0217732313500971
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is well known that Einstein gravity can be formulated as a gauge theory of Lorentz group where spin connections play a role of gauge fields and Riemann curvature tensors correspond to their field strengths. One can then pose an interesting question: What is the Einstein equation from the gauge theory point of view? Or equivalently, what is the gauge theory object corresponding to Einstein manifolds? We show that the Einstein equations in four dimensions are precisely self-duality equations in Yang-Mills gauge theory and so Einstein manifolds correspond to Yang-Mills instantons in SO(4) = SU(2)(L) x SU(2)(R) gauge theory. Specifically, we prove that any Einstein manifold with or without a cosmological constant always arises as the sum of SU(2)(L) instantons and SU(2)(R) anti-instantons. This result explains why an Einstein manifold must be stable because two kinds of instantons belong to different gauge groups, instantons in SU(2)(L) and anti-instantons in SU(2)(R), and so they cannot decay into a vacuum. We further illuminate the stability of Einstein manifolds by showing that they carry nontrivial topological invariants.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] YANG-MILLS INSTANTONS AND THE S-MATRIX
    HAWKING, SW
    POPE, CN
    NUCLEAR PHYSICS B, 1979, 161 (01) : 93 - 111
  • [22] Yang-Mills Flows on Nearly Kähler Manifolds and G2-Instantons
    Derek Harland
    Tatiana A. Ivanova
    Olaf Lechtenfeld
    Alexander D. Popov
    Communications in Mathematical Physics, 2010, 300 : 185 - 204
  • [23] YANG-MILLS INSTANTONS IN CLOSED FRIEDMANN UNIVERSES
    VERBIN, Y
    PHYSICS LETTERS B, 1989, 223 (3-4) : 296 - 299
  • [24] Yang-Mills instantons on cones and sine-cones over nearly Kahler manifolds
    Gemmer, Karl-Philip
    Lechtenfeld, Olaf
    Noelle, Christoph
    Popov, Alexander D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [25] Geometry of the Einstein and Yang-Mills equations
    Monte, EM
    Maia, MD
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (12) : 2827 - 2837
  • [26] Geometry of the Einstein and Yang-Mills equations
    E. M. Monte
    M. D. Maia
    International Journal of Theoretical Physics, 1997, 36 : 2827 - 2837
  • [27] EINSTEIN SPACES AND YANG-MILLS FIELDS
    POPOV, DA
    DAIKHIN, LI
    DOKLADY AKADEMII NAUK SSSR, 1975, 225 (04): : 790 - 793
  • [28] Geometry of the Einstein and Yang-Mills Equations
    Int J Theor Phys, 12 (2827):
  • [29] Einstein-Yang-Mills from pure Yang-Mills amplitudes
    Nandan, Dhritiman
    Plefka, Jan
    Schlotterer, Oliver
    Wen, Congkao
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (10): : 1 - 29
  • [30] Einstein-Yang-Mills from pure Yang-Mills amplitudes
    Dhritiman Nandan
    Jan Plefka
    Oliver Schlotterer
    Congkao Wen
    Journal of High Energy Physics, 2016