Development of nuclear microbattery prototype based on Schottky barrier diamond diodes

被引:103
作者
Bormashov, Vitaly [1 ]
Troschiev, Sergey [1 ]
Volkov, Alexander [1 ]
Tarelkin, Sergey [1 ,2 ]
Korostylev, Eugeniy [3 ]
Golovanov, Anton [1 ,3 ]
Kuznetsov, Mikhail [1 ]
Teteruk, Dmitry [1 ]
Kornilov, Nikolay [1 ]
Terentiev, Sergey [1 ]
Buga, Sergey [1 ,3 ]
Blank, Vladimir [1 ,2 ,3 ]
机构
[1] Technol Inst Superhard & Novel Carbon Mat, Moscow 142190, Russia
[2] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2015年 / 212卷 / 11期
关键词
betavoltaics; nuclear microbatteries; Schottky diodes; synthetic diamond;
D O I
10.1002/pssa.201532214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We designed, fabricated, and tested for the first time a prototype of nuclear micropower battery with an overall active area about 15 cm(2) consisted in 130 single cells based on Schottky barrier diamond diodes. Diodes selection for the battery assembly was performed on the basis of I-V curves measurements at electron beam irradiation in SEM. A typical energy conversion efficiency of each cell was about 4-6%. To characterize a battery prototype performance, we carried out photovoltaic measurements using different radioisotopes. Under irradiation by Ni-63 source with activity of 5 mCi cm(-2), the output power density of 3 nW cm(-2) was obtained. Due to large energy loss of the emitted beta particles in source itself, the total battery efficiency was only 0.6%. However, with the long-lived Ni-63 isotope, this already gives the battery specific energy of about 120 W.hr/kg, comparable with the commercial chemical cells. During experiments with high activity Sr-90-Y-90 source, no degradation was observed after 1,400 h of the radiation exposure. The maximum output power density of 2.4 mu Wcm(-2) was achieved using Pu-238 alpha source. The results display that synthetic diamond is a highly promising material for nuclear microbattery fabrication. A strategy to further cell optimization is also discussed. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:2539 / 2547
页数:9
相关论文
共 37 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Andreev V. M., 2002, POLYM PHOSPHORS VOLT
[3]  
Bao R., 2012, IEEE T ELECTRON DEV, V9, P1286
[4]   Radiation hardness studies of CVD diamond detectors [J].
Bauer, C ;
Baumann, I ;
Colledani, C ;
Conway, J ;
Delpierre, P ;
Djama, F ;
Dulinski, W ;
Fallou, A ;
Gan, KK ;
Gilmore, RS ;
Grigoriev, E ;
Hallewell, G ;
Han, S ;
Hessing, T ;
Honschied, K ;
Hrubec, J ;
Husson, D ;
Kagan, H ;
Kania, D ;
Kass, R ;
Kinnison, W ;
Knopfle, KT ;
Krammer, M ;
Llewellyn, TJ ;
Manfredi, PF ;
Pan, LS ;
Pernegger, H ;
Pernicka, M ;
Plano, R ;
Re, V ;
Roe, S ;
Rudge, A ;
Schaeffer, M ;
Schnetzer, S ;
Somalwar, S ;
Speziali, V ;
Stone, R ;
Tapper, RJ ;
Tesarek, R ;
Trischuk, W ;
Turchetta, R ;
Thomson, GB ;
Wagner, R ;
Weilhammer, P ;
White, C ;
Ziock, H ;
Zoeller, M .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 367 (1-3) :207-211
[5]   Power high-voltage and fast response Schottky barrier diamond diodes [J].
Blank, V. D. ;
Bormashov, V. S. ;
Tarelkin, S. A. ;
Buga, S. G. ;
Kuznetsov, M. S. ;
Teteruk, D. V. ;
Kornilov, N. V. ;
Terentiev, S. A. ;
Volkov, A. P. .
DIAMOND AND RELATED MATERIALS, 2015, 57 :32-36
[6]   Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method [J].
Bormashov, V. S. ;
Tarelkin, S. A. ;
Buga, S. G. ;
Kuznetsov, M. S. ;
Terentiev, S. A. ;
Semenov, A. N. ;
Blank, V. D. .
DIAMOND AND RELATED MATERIALS, 2013, 35 :19-23
[7]   Highly Enriched Nickel-63 Radionuclide for β-Voltaic Nuclear Batteries [J].
Bryskin, B. ;
Pustovalov, A. ;
Tsvetkov, L. ;
Fedorov, V. ;
Kostylev, A. .
ENERGY TECHNOLOGY, 2014, 2 (02) :210-214
[8]   Exceptionally high voltage Schottky diamond diodes and low boron doping [J].
Butler, JE ;
Geis, MW ;
Krohn, KE ;
Lawless, J ;
Deneault, S ;
Lyszczarz, TM ;
Flechtner, D ;
Wright, R .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (03) :S67-S71
[9]   Demonstration of a 4H SiC betavoltaic cell [J].
Chandrashekhar, MVS ;
Thomas, CI ;
Li, H ;
Spencer, MG ;
Lal, A .
APPLIED PHYSICS LETTERS, 2006, 88 (03) :1-3
[10]   CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users [J].
Drouin, Dominique ;
Couture, Alexandre Real ;
Joly, Dany ;
Tastet, Xavier ;
Aimez, Vincent ;
Gauvin, Raynald .
SCANNING, 2007, 29 (03) :92-101