Stability and semiclassics in self-generated fields

被引:1
作者
Erdos, Laszlo [1 ]
Fournais, Soren [2 ]
Solovej, Jan Philip [3 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus, Denmark
[3] Univ Copenhagen, Dept Math, DK-2100 Copenhagen, Denmark
基金
欧洲研究理事会;
关键词
Semiclassical eigenvalue estimate; Maxwell-Pauli system; Scott correction; HIGH MAGNETIC-FIELDS; THOMAS-FERMI THEORY; SCHRODINGER OPERATOR; COULOMB-SYSTEMS; SCOTT CORRECTION; HEAVY MOLECULES; ASYMPTOTICS; ENERGY; ATOMS; EIGENVALUES;
D O I
10.4171/JEMS/416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider non-interacting particles subject to a fixed external potential V and a self-generated magnetic field B. The total energy includes the field energy beta integral B-2 and we minimize over all particle states and magnetic fields. In the case of spin-1/2 particles this minimization leads to the coupled Maxwell-Pauli system. The parameter beta tunes the coupling strength between the field and the particles and it effectively determines the strength of the field. We investigate the stability and the semiclassical asymptotics, h -> 0, of the total ground state energy E (beta, h, V). The relevant parameter measuring the field strength in the semiclassical limit is k = beta h. We are not able to give the exact leading order semiclassical asymptotics uniformly in k or even for fixed k. We do however give upper and lower bounds on E with almost matching dependence on k. In the simultaneous limit h -> 0 and k -> infinity we show that the standard non-magnetic Weyl asymptotics holds. The same result also holds for the spinless case, i.e. where the Pauli operator is replaced by the Schrodinger operator.
引用
收藏
页码:2093 / 2113
页数:21
相关论文
共 35 条
[1]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[2]   Ground State Energy of Large Atoms in a Self-Generated Magnetic Field [J].
Erdoes, Laszlo ;
Solovej, Jan Philip .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (01) :229-249
[3]   Diamagnetic behavior of sums Dirichlet eigenvalues [J].
Erdös, L ;
Loss, M ;
Vougalter, V .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (03) :891-+
[4]   The kernel of dirac operators on S3 and R3 [J].
Erdós, L ;
Solovej, JP .
REVIEWS IN MATHEMATICAL PHYSICS, 2001, 13 (10) :1247-1280
[5]   Semiclassical eigenvalue estimates for the pauli operator with strong non-homogeneous magnetic fields .2. Leading order asymptotic estimates [J].
Erdos, L ;
Solovej, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 188 (03) :599-656
[6]   Scott Correction for Large Atoms and Molecules in a Self-Generated Magnetic Field [J].
Erdos, Laszlo ;
Fournais, Soren ;
Solovej, Jan Philip .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 312 (03) :847-882
[7]   Second Order Semiclassics with Self-Generated Magnetic Fields [J].
Erdos, Laszlo ;
Fournais, Soren ;
Solovej, Jan Philip .
ANNALES HENRI POINCARE, 2012, 13 (04) :671-730
[8]   ON THE ENERGY OF A LARGE ATOM [J].
FEFFERMAN, CL ;
SECO, LA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 23 (02) :525-530
[9]   Note to the Quantification of the harmonic Oscillator in a Magnetic Field [J].
Fock, V. .
ZEITSCHRIFT FUR PHYSIK, 1928, 47 (5-6) :446-448
[10]  
Frank RL, 2009, J EUR MATH SOC, V11, P1365