Positive Energy Representations of Affine Vertex Algebras

被引:10
作者
Futorny, Vyacheslav [1 ,2 ]
Krizka, Libor [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] SUSTech, Int Ctr Math, Shenzhen, Peoples R China
基金
巴西圣保罗研究基金会;
关键词
OPERATOR-ALGEBRAS; WAKIMOTO MODULES; REALIZATIONS; RATIONALITY; VARIETY;
D O I
10.1007/s00220-020-03861-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct new families of positive energy representations of affine vertex algebras together with their free field realizations by using localization technique. We introduce the twisting functor T-alpha on the category of modules over the universal affine vertex algebra V-kappa (g) of level kappa for any positive root alpha of g, and the Wakimoto functor from a certain category of g-modules to the category of V-kappa (g)-modules. These two functors commute (taking a proper restriction of T-alpha on g-modules) and the image of the Wakimoto functor consists of relaxed Wakimoto (g) over cap (kappa)-modules. In particular, applying the twisting functor T-alpha to the relaxed Wakimoto (g) over cap (kappa)-module whose top degree component is isomorphic to the Verma g-module M-b(g)(lambda), we obtain the relaxed Wakimoto (g) over cap kappa-module whose top degree component is isomorphic to the alpha-Gelfand-Tsetlin g-module W-b(g)(lambda, alpha). We show that the relaxed Verma module and relaxed Wakimoto module whose top degree components are such a-Gelfand-Tsetlin modules, are isomorphic generically. This is an analogue of the result of E. Frenkel for Wakimoto modules both for critical and non-critical level. For a parabolic subalgebra p of g we construct a new large family of positive energy representations of the simple affine vertex algebra L-kappa(g) of admissible level kappa by means of the twisting functor applied on generalized Verma modules for the parabolic subalgebra p.
引用
收藏
页码:841 / 891
页数:51
相关论文
共 43 条