Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

被引:607
作者
Ugurbil, Kamil [1 ]
Xu, Junqian [1 ,2 ]
Auerbach, Edward J. [1 ]
Moeller, Steen [1 ]
Vu, An T. [1 ]
Duarte-Carvajalino, Julio M. [1 ]
Lenglet, Christophe [1 ]
Wu, Xiaoping [1 ]
Schmitter, Sebastian [1 ]
Van de Moortele, Pierre Francois [1 ]
Strupp, John [1 ]
Sapiro, Guillermo [1 ,3 ]
De Martino, Federico [1 ,4 ]
Wang, Dingxin [1 ,5 ]
Harel, Noam [1 ]
Garwood, Michael [1 ]
Chen, Liyong [6 ,7 ]
Feinberg, David A. [6 ,7 ]
Smith, Stephen M. [8 ]
Miller, Karla L. [8 ]
Sotiropoulos, Stamatios N. [8 ]
Jbabdi, Saad [8 ]
Andersson, Jesper L. R. [8 ]
Behrens, Timothy E. J. [8 ,9 ]
Glasser, Matthew F. [10 ]
Van Essen, David C. [10 ]
Yacoub, Essa [1 ]
机构
[1] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
[2] Icahn Sch Med Mt Sinai, Translat & Mol Imaging Inst, New York, NY USA
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[4] Univ Maastricht, Maastricht, Netherlands
[5] Siemens Med Solut USA Inc, Minneapolis, MN USA
[6] Adv MRI Technol, Sebastopol, CA USA
[7] Univ Calif Berkeley, Berkeley, CA 94720 USA
[8] Univ Oxford, Oxford Ctr Funct MRI Brain, FMRIB, Oxford, England
[9] UCL, Wellcome Trust Ctr NeuroImaging, London, England
[10] Washington Univ, Dept Anat & Neurobiol, St Louis, MO USA
基金
美国国家卫生研究院;
关键词
INDEPENDENT COMPONENT ANALYSIS; PROSPECTIVE MOTION CORRECTION; PARALLEL IMAGING PERFORMANCE; OCULAR DOMINANCE COLUMNS; INDUCED SIGNAL CHANGES; HIGH MAGNETIC-FIELDS; WHOLE-BRAIN FMRI; SPIN-ECHO FMRI; TESLA; WHITE-MATTER;
D O I
10.1016/j.neuroimage.2013.05.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The Human Connectome Project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce 'functional connectivity'; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 T, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 s for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total dMRI data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 T magnetic field are also presented, targeting higher spatial resolution, enhanced specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields, and reduced power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 104
页数:25
相关论文
共 168 条
  • [51] High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels
    Hyde, JS
    Biswal, BB
    Jesmanowicz, A
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (01) : 114 - 125
  • [52] Neurovascular regulation in the normal brain and in Alzheimer's disease
    Iadecola, C
    [J]. NATURE REVIEWS NEUROSCIENCE, 2004, 5 (05) : 347 - 360
  • [53] Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory
    Iturria-Medina, Yasser
    Sotero, Roberto C.
    Canales-Rodriguez, Erick J.
    Aleman-Gomez, Yasser
    Melie-Garcia, Lester
    [J]. NEUROIMAGE, 2008, 40 (03) : 1064 - 1076
  • [54] Practical considerations for the design of sparse-spokes pulses
    Jankiewicz, Marcin
    Zeng, Huairen
    Moore, Jason E.
    Anderson, Adam W.
    Avison, Malcolm J.
    Welch, E. Brian
    Gore, John C.
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2010, 203 (02) : 294 - 304
  • [55] Tractography: Where Do We Go from Here?
    Jbabdi, Saad
    Johansen-Berg, Heidi
    [J]. BRAIN CONNECTIVITY, 2011, 1 (03) : 169 - 183
  • [56] Multitask Compressive Sensing
    Ji, Shihao
    Dunson, David
    Carin, Lawrence
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 92 - 106
  • [57] Kamath A., 2012, P MICCAI 2012 WORKSH
  • [58] Theoretical and numerical aspects of transmit SENSE
    Katscher, U
    Börnert, P
    van den Brink, JS
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (04) : 520 - 525
  • [59] Transmit SENSE
    Katscher, U
    Börnert, P
    Leussler, C
    van den Brink, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 49 (01) : 144 - 150
  • [60] POTENTIAL PITFALLS OF FUNCTIONAL MRI USING CONVENTIONAL GRADIENT-RECALLED ECHO TECHNIQUES
    KIM, SG
    HENDRICH, K
    HU, XP
    MERKLE, H
    UGURBIL, K
    [J]. NMR IN BIOMEDICINE, 1994, 7 (1-2) : 69 - 74