Model based identification of aging parameters in lithium ion batteries

被引:192
作者
Prasad, Githin K. [1 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Battery management systems; Degradation mechanisms; State of health estimation; Control oriented model; MANAGEMENT-SYSTEMS; CAPACITY FADE; PACKS; STATE;
D O I
10.1016/j.jpowsour.2013.01.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As lithium ion cells age, they experience power and energy fade associated with impedance rise and capacity loss, respectively. Identification of key aging parameters in lithium ion battery models can validate degradation hypotheses and provide a foundation for State of Health (SOH) estimation. This paper develops and simplifies an electrochemical model that depends on two key aging parameters, cell resistance and the solid phase diffusion time of Li+ species in the positive electrode. Off-line linear least squares and on-line adaptive gradient update processing of voltage and current data from fresh and aged lithium ion cells produce estimates of these aging parameters. These estimated parameters vary monotonically with age, consistent with accepted degradation mechanisms such as solid electrolyte interface (SEI) layer growth and contact loss. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
[41]   Low Temperature Aging Tests for Lithium-ion Batteries [J].
Jaguemont, J. ;
Boulon, L. ;
Venet, P. ;
Dube, Y. ;
Sari, A. .
2015 IEEE 24TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2015, :1284-1289
[42]   An LSTM-SA model for SOC estimation of lithium-ion batteries under various temperatures and aging levels [J].
Chen, Guanxu ;
Peng, Weiwen ;
Yang, Fangfang .
JOURNAL OF ENERGY STORAGE, 2024, 84
[43]   Aging-aware equivalent circuit model for SOH estimation in lithium-ion batteries [J].
Di Fonso, Roberta ;
Teodorescu, Remus ;
Bharadwaj, Pallavi .
2024 IEEE INTERNATIONAL COMMUNICATIONS ENERGY CONFERENCE, INTELEC, 2024,
[44]   Differential evolution based regression algorithm for mathematical representation of electrical parameters in lithium-ion battery model [J].
Vyas, Ujjval B. ;
Shah, Varsha A. .
JOURNAL OF ENERGY STORAGE, 2022, 45
[45]   A novel quantitative electrochemical aging model considering side reactions for lithium-ion batteries [J].
Zhang, Xi ;
Gao, Yizhao ;
Guo, Bangjun ;
Zhu, Chong ;
Zhou, Xuan ;
Wang, Lin ;
Cao, Jianhua .
ELECTROCHIMICA ACTA, 2020, 343
[46]   A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries [J].
Yang, Fangfang ;
Song, Xiangbao ;
Dong, Guangzhong ;
Tsui, Kwok-Leung .
ENERGY, 2019, 171 :1173-1182
[47]   Evaluation on Performance of Lithium-ion Batteries Based on Internal Physical and Chemical Parameters [J].
Lyu, Chao ;
Zhang, Liqiang ;
Luo, Weilin ;
Ma, Kehua ;
Wang, Lixin .
2013 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE (PHM), 2013, 33 :949-954
[48]   Model-Based Simultaneous Optimization of Multiple Design Parameters for Lithium-Ion Batteries for Maximization of Energy Density [J].
De, Sumitava ;
Northrop, Paul W. C. ;
Ramadesigan, Venkatasailanathan ;
Braatz, Richard D. ;
Subramanian, Venkat R. .
2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, :4275-4280
[49]   Lithium-ion batteries modeling: A simple fractional differentiation based model and its associated parameters estimation method [J].
Sabatier, Jocelyn ;
Francisco, Junior Mbala ;
Guillemard, Franck ;
Lavigne, Loic ;
Moze, Mathieu ;
Merveillaut, Mathieu .
SIGNAL PROCESSING, 2015, 107 :290-301
[50]   An Approach for SOC Estimation Based on Sliding Mode Observer and Fractional Order Equivalent Circuit Model of Lithium-Ion Batteries [J].
Zhong, Fuli ;
Li, Hui ;
Zhong, Qishui .
2014 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2014), 2014, :1497-1503