Model based identification of aging parameters in lithium ion batteries

被引:192
作者
Prasad, Githin K. [1 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Battery management systems; Degradation mechanisms; State of health estimation; Control oriented model; MANAGEMENT-SYSTEMS; CAPACITY FADE; PACKS; STATE;
D O I
10.1016/j.jpowsour.2013.01.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As lithium ion cells age, they experience power and energy fade associated with impedance rise and capacity loss, respectively. Identification of key aging parameters in lithium ion battery models can validate degradation hypotheses and provide a foundation for State of Health (SOH) estimation. This paper develops and simplifies an electrochemical model that depends on two key aging parameters, cell resistance and the solid phase diffusion time of Li+ species in the positive electrode. Off-line linear least squares and on-line adaptive gradient update processing of voltage and current data from fresh and aged lithium ion cells produce estimates of these aging parameters. These estimated parameters vary monotonically with age, consistent with accepted degradation mechanisms such as solid electrolyte interface (SEI) layer growth and contact loss. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
[31]   A simplified electrochemical lithium-ion batteries model based on-informed LSTM_Res network [J].
Kong, Chun ;
Zhu, Guorong ;
V. Wang, Jing ;
Kang, Jianqiang ;
China, Qian Wang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 246
[32]   Model-Based Dynamic Power Assessment of Lithium-Ion Batteries Considering Different Operating Conditions [J].
Hu, Xiaosong ;
Xiong, Rui ;
Egardt, Bo .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (03) :1948-1959
[33]   A novel model-based damage detection method for lithium-ion batteries [J].
Yang, Zichuan ;
Li, Junqiu ;
Jiang, Haifu ;
Liu, Ziming .
JOURNAL OF ENERGY STORAGE, 2021, 42
[34]   Online model identification of lithium-ion battery for electric vehicles [J].
Hu Xiao-song ;
Sun Feng-chun ;
Zou Yuan .
JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2011, 18 (05) :1525-1531
[35]   An online state of health estimation method for lithium-ion batteries based on time partitioning and data-driven model identification [J].
Mussi, Marco ;
Pellegrino, Luigi ;
Restelli, Marcello ;
Trov, Francesco .
JOURNAL OF ENERGY STORAGE, 2022, 55
[36]   Experimental based Aging Model for Automotive Li-Ion Batteries [J].
Milanesi, Lorenzo ;
Scharrer, Matthias K. ;
Barater, Davide .
IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
[37]   Lithium-Ion Battery Parameter Identification via Extremum Seeking Considering Aging and Degradation [J].
Sanz-Gorrachategui, Ivan ;
Pastor-Flores, Pablo ;
Bono-Nuez, Antonio ;
Ferrer-Sanchez, Cora ;
Guillen-Asensio, Alejandro ;
Bernal-Ruiz, Carlos .
ENERGIES, 2021, 14 (22)
[38]   Simplification of full homogenized macro-scale model for lithium-ion batteries [J].
Qadir, Salman ;
Li, Guang ;
Chen, Zheng .
JOURNAL OF ENERGY STORAGE, 2022, 46
[39]   Model-based state estimation for lithium-ion batteries [J].
Rausch, Matthias ;
Klein, Reinhardt ;
Streif, Stefan ;
Pankiewitz, Christian ;
Findeisen, Rolf .
AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) :296-311
[40]   Aging datasets of commercial lithium-ion batteries: A review [J].
Mayemba, Quentin ;
Li, An ;
Ducret, Gabriel ;
Venet, Pascal .
JOURNAL OF ENERGY STORAGE, 2024, 83