Model based identification of aging parameters in lithium ion batteries

被引:182
作者
Prasad, Githin K. [1 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Battery management systems; Degradation mechanisms; State of health estimation; Control oriented model; MANAGEMENT-SYSTEMS; CAPACITY FADE; PACKS; STATE;
D O I
10.1016/j.jpowsour.2013.01.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As lithium ion cells age, they experience power and energy fade associated with impedance rise and capacity loss, respectively. Identification of key aging parameters in lithium ion battery models can validate degradation hypotheses and provide a foundation for State of Health (SOH) estimation. This paper develops and simplifies an electrochemical model that depends on two key aging parameters, cell resistance and the solid phase diffusion time of Li+ species in the positive electrode. Off-line linear least squares and on-line adaptive gradient update processing of voltage and current data from fresh and aged lithium ion cells produce estimates of these aging parameters. These estimated parameters vary monotonically with age, consistent with accepted degradation mechanisms such as solid electrolyte interface (SEI) layer growth and contact loss. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [21] Thermal Transients to Accelerate Cyclic Aging of Lithium-Ion Batteries
    Cloos, Lisa
    Queisser, Oliver
    Chahbaz, Ahmed
    Paarmann, Sabine
    Sauer, Dirk Uwe
    Wetzel, Thomas
    BATTERIES & SUPERCAPS, 2024, 7 (03)
  • [22] Aging diagnostics in lithium-ion batteries with differential mechanical measurements
    Clerici, Davide
    Pistorio, Francesca
    Soma, Aurelio
    APPLIED ENERGY, 2025, 386
  • [23] Model-based On-board Monitoring for Lithium-Ion Batteries
    Remmlinger, Juergen
    Buchholz, Michael
    Dietmayer, Klaus
    AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) : 282 - 295
  • [24] Bayesian Estimation of Model Parameters of Equivalent Circuit Model for Detecting Degradation Parts of Lithium-Ion Battery
    Miyake, Tamon
    Suzuki, Tomoyuki
    Funabashi, Satoshi
    Saito, Namiko
    Kamezaki, Mitsuhiro
    Shoda, Takahiro
    Saigo, Tsutomu
    Sugano, Shigeki
    IEEE ACCESS, 2021, 9 : 159699 - 159713
  • [25] State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method
    Cui, Yingzhi
    Zuo, Pengjian
    Du, Chunyu
    Gao, Yunzhi
    Yang, Jie
    Cheng, Xinqun
    Ma, Yulin
    Yin, Geping
    ENERGY, 2018, 144 : 647 - 656
  • [26] A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries
    Schmalstieg, Johannes
    Kaebitz, Stefan
    Ecker, Madeleine
    Sauer, Dirk Uwe
    JOURNAL OF POWER SOURCES, 2014, 257 : 325 - 334
  • [27] An ensemble model for predicting the remaining useful performance of lithium-ion batteries
    Xing, Yinjiao
    Ma, Eden W. M.
    Tsui, Kwok-Leung
    Pecht, Michael
    MICROELECTRONICS RELIABILITY, 2013, 53 (06) : 811 - 820
  • [28] Experimental Validation of the Aging Model of Lithium-Ion Batteries Regardless of Deterioration Conditions
    Kharche, Nitin A.
    Singh, Praveen
    Soni, N. B.
    Vekariya, Daxa
    Patil, Harshal
    Maranan, Ramya
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [29] Model based condition monitoring in lithium-ion batteries
    Singh, Amardeep
    Izadian, Afshin
    Anwar, Sohel
    JOURNAL OF POWER SOURCES, 2014, 268 : 459 - 468
  • [30] Model-Based Dynamic Power Assessment of Lithium-Ion Batteries Considering Different Operating Conditions
    Hu, Xiaosong
    Xiong, Rui
    Egardt, Bo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (03) : 1948 - 1959