Model based identification of aging parameters in lithium ion batteries

被引:192
作者
Prasad, Githin K. [1 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Battery management systems; Degradation mechanisms; State of health estimation; Control oriented model; MANAGEMENT-SYSTEMS; CAPACITY FADE; PACKS; STATE;
D O I
10.1016/j.jpowsour.2013.01.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As lithium ion cells age, they experience power and energy fade associated with impedance rise and capacity loss, respectively. Identification of key aging parameters in lithium ion battery models can validate degradation hypotheses and provide a foundation for State of Health (SOH) estimation. This paper develops and simplifies an electrochemical model that depends on two key aging parameters, cell resistance and the solid phase diffusion time of Li+ species in the positive electrode. Off-line linear least squares and on-line adaptive gradient update processing of voltage and current data from fresh and aged lithium ion cells produce estimates of these aging parameters. These estimated parameters vary monotonically with age, consistent with accepted degradation mechanisms such as solid electrolyte interface (SEI) layer growth and contact loss. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
[21]   Model-based On-board Monitoring for Lithium-Ion Batteries [J].
Remmlinger, Juergen ;
Buchholz, Michael ;
Dietmayer, Klaus .
AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) :282-295
[22]   Thermal Transients to Accelerate Cyclic Aging of Lithium-Ion Batteries [J].
Cloos, Lisa ;
Queisser, Oliver ;
Chahbaz, Ahmed ;
Paarmann, Sabine ;
Sauer, Dirk Uwe ;
Wetzel, Thomas .
BATTERIES & SUPERCAPS, 2024, 7 (03)
[23]   Aging diagnostics in lithium-ion batteries with differential mechanical measurements [J].
Clerici, Davide ;
Pistorio, Francesca ;
Soma, Aurelio .
APPLIED ENERGY, 2025, 386
[24]   Model based condition monitoring in lithium-ion batteries [J].
Singh, Amardeep ;
Izadian, Afshin ;
Anwar, Sohel .
JOURNAL OF POWER SOURCES, 2014, 268 :459-468
[25]   State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method [J].
Cui, Yingzhi ;
Zuo, Pengjian ;
Du, Chunyu ;
Gao, Yunzhi ;
Yang, Jie ;
Cheng, Xinqun ;
Ma, Yulin ;
Yin, Geping .
ENERGY, 2018, 144 :647-656
[26]   Bayesian Estimation of Model Parameters of Equivalent Circuit Model for Detecting Degradation Parts of Lithium-Ion Battery [J].
Miyake, Tamon ;
Suzuki, Tomoyuki ;
Funabashi, Satoshi ;
Saito, Namiko ;
Kamezaki, Mitsuhiro ;
Shoda, Takahiro ;
Saigo, Tsutomu ;
Sugano, Shigeki .
IEEE ACCESS, 2021, 9 :159699-159713
[27]   A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries [J].
Schmalstieg, Johannes ;
Kaebitz, Stefan ;
Ecker, Madeleine ;
Sauer, Dirk Uwe .
JOURNAL OF POWER SOURCES, 2014, 257 :325-334
[28]   An ensemble model for predicting the remaining useful performance of lithium-ion batteries [J].
Xing, Yinjiao ;
Ma, Eden W. M. ;
Tsui, Kwok-Leung ;
Pecht, Michael .
MICROELECTRONICS RELIABILITY, 2013, 53 (06) :811-820
[29]   State of charge estimation of lithium-ion batteries based on an improved parameter identification method [J].
Xia, Bizhong ;
Chen, Chaoren ;
Tian, Yong ;
Wang, Mingwang ;
Sun, Wei ;
Xu, Zhihui .
ENERGY, 2015, 90 :1426-1434
[30]   Experimental Validation of the Aging Model of Lithium-Ion Batteries Regardless of Deterioration Conditions [J].
Kharche, Nitin A. ;
Singh, Praveen ;
Soni, N. B. ;
Vekariya, Daxa ;
Patil, Harshal ;
Maranan, Ramya .
2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,