Model based identification of aging parameters in lithium ion batteries

被引:182
作者
Prasad, Githin K. [1 ]
Rahn, Christopher D. [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
关键词
Battery management systems; Degradation mechanisms; State of health estimation; Control oriented model; MANAGEMENT-SYSTEMS; CAPACITY FADE; PACKS; STATE;
D O I
10.1016/j.jpowsour.2013.01.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As lithium ion cells age, they experience power and energy fade associated with impedance rise and capacity loss, respectively. Identification of key aging parameters in lithium ion battery models can validate degradation hypotheses and provide a foundation for State of Health (SOH) estimation. This paper develops and simplifies an electrochemical model that depends on two key aging parameters, cell resistance and the solid phase diffusion time of Li+ species in the positive electrode. Off-line linear least squares and on-line adaptive gradient update processing of voltage and current data from fresh and aged lithium ion cells produce estimates of these aging parameters. These estimated parameters vary monotonically with age, consistent with accepted degradation mechanisms such as solid electrolyte interface (SEI) layer growth and contact loss. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [1] Aging model development based on multidisciplinary parameters for lithium-ion batteries
    Garg, Akhil
    Shaosen, Su
    Gao, Liang
    Peng, Xiongbin
    Baredar, Prashant
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (04) : 2801 - 2818
  • [2] Model identification of lithium-ion batteries in the portable power system
    Zhou, Xing
    Cheng, Long
    Tang, Yanzhen
    Pan, Zhengqiang
    Sun, Quan
    2016 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2016,
  • [3] SOC Estimation Based on OCV and Online Identification Parameters Of Lithium Ion Batteries with ADALINE
    Aggoun, Ghania
    Mansouri, Rachid
    Abdeslam, Djaffar Ould
    PROCEEDINGS OF 2016 8TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC 2016), 2016, : 538 - 543
  • [4] A simplified electrochemical model for lithium-ion batteries based on ensemble learning
    Zhu, Guorong
    Kong, Chun
    Wang, Jing V.
    Chen, Weihua
    Wang, Qian
    Kang, Jianqiang
    ISCIENCE, 2024, 27 (05)
  • [5] Accurate Model Parameter Identification to Boost Precise Aging Prediction of Lithium-Ion Batteries: A Review
    Ding, Shicong
    Li, Yiding
    Dai, Haifeng
    Wang, Li
    He, Xiangming
    ADVANCED ENERGY MATERIALS, 2023, 13 (39)
  • [6] Calendar aging model for lithium-ion batteries considering the influence of cell characterization
    Krupp, Amelie
    Beckmann, Robert
    Diekmann, Theys
    Ferg, Ernst
    Schuldt, Frank
    Agert, Carsten
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [7] On the use of electrochemical impedance spectroscopy to characterize and model the aging phenomena of lithium-ion batteries: a critical review
    Iurilli, Pietro
    Brivio, Claudio
    Wood, Vanessa
    JOURNAL OF POWER SOURCES, 2021, 505
  • [8] Fast UD Factorization-Based RLS Online Parameter Identification for Model-Based Condition Monitoring of Lithium-ion Batteries
    Kim, Taesic
    Wang, Yebin
    Sahinoglu, Zafer
    Wada, Toshihiro
    Hara, Satoshi
    Qiao, Wei
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 4410 - 4415
  • [9] Experimental Validation of Electrothermal and Aging Parameter Identification for Lithium-Ion Batteries
    Conte, Francesco
    Giallongo, Marco
    Kaza, Daniele
    Natrella, Gianluca
    Tachibana, Ryohei
    Tsuji, Shinji
    Silvestro, Federico
    Vichi, Giovanni
    ENERGIES, 2024, 17 (10)
  • [10] An On-Board Model-Based Condition Monitoring for Lithium-Ion Batteries
    Kim, Taesic
    Adhikaree, Amit
    Pandey, Rajendra
    Kang, Dae-Wook
    Kim, Myoungho
    Oh, Chang-Yeol
    Baek, Ju-Won
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2019, 55 (02) : 1835 - 1843