Deformations and geometric rigidity of Leibniz algebras

被引:22
作者
Balavoine, D
机构
关键词
D O I
10.1080/00927879608825618
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A formal deformation of a Leibniz algebra A over a commutative ring k, consists of a formal series F = Sigma(n=0)(+infinity)f(n)t(n), extending the Leibniz bracket of A, defined by f(0). We show that if f is a 2-cocycle for the cohomology of A with coefficients in its adjoint representation, a sufficient condition for the existence of F with f(1) = f, is the vanishing of the third cohomology group of A with coefficients in its adjoint representation. In the last section, we study deformations from the point of view of algebraic varieties.
引用
收藏
页码:1017 / 1034
页数:18
相关论文
共 18 条
[1]  
ALGEBRE NB, 1983, ALGEBRE COMMUTATIVE, pCH8
[2]  
BALAVOINE D, 1994, CR ACAD SCI I-MATH, V319, P783
[3]   COALGEBRAS OVER A COMMUTATIVE RING [J].
BARR, M .
JOURNAL OF ALGEBRA, 1974, 32 (03) :600-610
[4]  
BARR M, 1969, LECT NOTES MATH, V80, P245
[5]  
BOURBAKI N, 1983, ALGEBRE ELEMENTS MAT, pCH10
[6]  
BOURBAKI N, 1983, ALGEBRE ELEMENTS MAT, pCH4
[7]  
CARLES R, 1993, PREPUBLICATIONS U PO, V75
[8]  
CUVIER C, 1994, ANN SCI ECOLE NORM S, V27, P1
[9]   THE CONSTRUCTION OF COFREE COALGEBRAS [J].
FOX, TF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 84 (02) :191-198
[10]   AN INTRODUCTION TO ALGEBRAIC DEFORMATION-THEORY [J].
FOX, TF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 84 (01) :17-41