共 23 条
Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems
被引:31
|作者:
Osman, Abdimajid
[1
,2
]
Hitzler, Walter E.
[3
]
Ameur, Adam
[4
]
Provost, Patrick
[5
]
机构:
[1] Dept Clin Chem, Linkoping, Sweden
[2] Linkoping Univ, Dept Clin & Expt Med, Linkoping, Sweden
[3] Johannes Gutenberg Univ Mainz, Transfus Ctr, Univ Med Ctr, D-55122 Mainz, Germany
[4] Uppsala Univ, Dept Immunol Genet & Pathol, Sci Life Lab, Uppsala, Sweden
[5] Univ Laval, CHUQ Res Ctr, CHUL, Quebec City, PQ, Canada
来源:
PLOS ONE
|
2015年
/
10卷
/
07期
基金:
加拿大健康研究院;
关键词:
PROTEIN;
INACTIVATION;
D O I:
10.1371/journal.pone.0133070
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Platelet concentrates (PCs) are prepared at blood banks for transfusion to patients in certain clinical conditions associated with a low platelet count. To prevent transfusion-transmitted infections via PCs, different pathogen reduction (PR) systems have been developed that inactivate the nucleic acids of contaminating pathogens by chemical cross-linking, a mechanism that may also affect platelets' nucleic acids. We previously reported that treatment of stored platelets with the PR system Intercept significantly reduced the level of half of the microRNAs that were monitored, induced platelet activation and compromised the platelet response to physiological agonists. Using genome-wide differential expression (DE) RNA sequencing (RNA-Seq), we now report that Intercept markedly perturbs the mRNA transcriptome of human platelets and alters the expression level of >800 mRNAs (P<0.05) compared to other PR systems and control platelets. Of these, 400 genes were deregulated with DE corresponding to fold changes (FC) >= 2. At the p-value < 0.001, as many as 147 genes were deregulated by >= 2-fold in Intercept-treated platelets, compared to none in the other groups. Finally, integrated analysis combining expression data for microRNA (miRNA) and mRNA, and involving prediction of miRNA-mRNA interactions, disclosed several positive and inverse correlations between miRNAs and mRNAs in stored platelets. In conclusion, this study demonstrates that Intercept markedly deregulates the platelet mRNA transcriptome, concomitant with reduced levels of mRNA-regulatory miRNAs. These findings should enlighten authorities worldwide when considering the implementation of PR systems, that target nucleic acids and are not specific to pathogens, for the management of blood products.
引用
收藏
页数:17
相关论文