The initial value problem for the cubic nonlinear Klein-Gordon equation

被引:79
作者
Hayashi, Nakao [1 ]
Naumkin, Pavel I. [2 ]
机构
[1] Osaka Univ, Dept Math, Grad Sch Sci, Toyonaka, Osaka 5600043, Japan
[2] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2008年 / 59卷 / 06期
关键词
35Q53; 35Q55; Asymptotics of solutions; Cubic nonlinear Klein-Gordon equation; Initial value problem; The inverse wave modified operator;
D O I
10.1007/s00033-007-7008-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial value problem for the cubic nonlinear Klein-Gordon equation mu similar to R and the initial data are real-valued functions. We obtain a sharp asymptotic behavior of small solutions without the condition of a compact support on the initial data which was assumed in the previous works.
引用
收藏
页码:1002 / 1028
页数:27
相关论文
共 28 条
[1]   ON SPACE-TIME MEANS AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1984, 186 (03) :383-391
[2]   ON SCATTERING AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :310-344
[3]   Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions [J].
Delort, JM ;
Fang, DY ;
Xue, RY .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) :288-323
[4]  
Delort PJM, 2001, ANN SCI ECOLE NORM S, V34, P1
[5]  
FEDORYUK MV, 1987, ASYMPTOTICS INTEGRAL, P152
[6]  
GEORGIEV V, 1992, COMMUN PART DIFF EQ, V17, P1111
[7]   Weighted Sobolev spaces applied to nonlinear Klein-Gordon equation [J].
Georgiev, V ;
Lucente, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (01) :21-26
[8]  
Georgiev V., 1996, ASYMPTOTIC BEHAV ONE
[9]  
GINIBRE J, 1985, PONCARE PHYS THEOR, V41, P399
[10]   Asymptotics for large time of solutions to the nonlinear Schrodinger and Hartree equations [J].
Hayashi, N ;
Naumkin, PI .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (02) :369-389