Uncertainty Propagation in Quantitative Magnetic Force Microscopy Using a Monte-Carlo Method

被引:2
作者
Marschall, Manuel [1 ]
Sievers, Sibylle [1 ]
Schumacher, Hans Werner [1 ]
Elster, Clemens [1 ]
机构
[1] Phys Tech Bundesanstalt, D-10587 Braunschweig, Germany
关键词
Uncertainty; Calibration; Measurement uncertainty; Mathematical models; Phase measurement; Magnetic multilayers; Magnetic resonance imaging; magnetic force microscopy (MFM); Monte Carlo (MC) methods; uncertainty; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; CALIBRATION;
D O I
10.1109/TMAG.2022.3153176
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Monte-Carlo (MC)-type method is utilized for the propagation of uncertainties in quantitative magnetic force microscopy (qMFM). In qMFM, quantitative magnetic field distributions are inferred from magnetic force microscopy (MFM) raw data using a calibration of the instrument point spread function and a subsequent inversion process. The two stages of calibration and measurement may be subject to a variety of uncertainties that naturally arise in practice. Identifying these sources of uncertainties and quantifying their impact on the reconstruction of the measurand is crucial for reliable quantitative studies of nanomagnetic materials and devices. So far, the propagation of variance method has been applied to determine the uncertainty budget for a complete calibration and measurement process. In this work, we are able to improve the uncertainty description in terms of structure and magnitude by application of an MC method. We demonstrate the importance of correlations and show possible side effects of model linearizations.
引用
收藏
页数:8
相关论文
共 44 条
[1]   Probable error of a correlation coefficient. [J].
不详 .
BIOMETRIKA, 1908, 6 :302-310
[2]  
[Anonymous], 2008, 1012008 JCGM BIPM IE
[3]  
[Anonymous], 1967, Geophys Prospect, DOI DOI 10.1111/J.1365-2478.1967.TB01793.X
[4]   A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data [J].
Babuska, Ivo ;
Nobile, Fabio ;
Tempone, Raul .
SIAM REVIEW, 2010, 52 (02) :317-355
[5]   How to measure the local Dzyaloshinskii-Moriya Interaction in Skyrmion Thin-Film Multilayers [J].
Bacani, Mirko ;
Marioni, Miguel A. ;
Schwenk, Johannes ;
Hug, Hans J. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Surrogate-assisted global sensitivity analysis: an overview [J].
Cheng, Kai ;
Lu, Zhenzhou ;
Ling, Chunyan ;
Zhou, Suting .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (03) :1187-1213
[7]   Comparison and Validation of Different Magnetic Force Microscopy Calibration Schemes [J].
Corte-Leon, Hector ;
Neu, Volker ;
Manzin, Alessandra ;
Barton, Craig ;
Tang, Yuanjun ;
Gerken, Manuela ;
Klapetek, Petr ;
Schumacher, Hans Werner ;
Kazakova, Olga .
SMALL, 2020, 16 (11)
[8]   Metrological large range magnetic force microscopy [J].
Dai, Gaoliang ;
Hu, Xiukun ;
Sievers, Sibylle ;
Scarioni, Alexander Fernandez ;
Neu, Volker ;
Fluegge, Jens ;
Schumacher, Hans Werner .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (09)
[9]   Magnetic skyrmions: advances in physics and potential applications [J].
Fert, Albert ;
Reyren, Nicolas ;
Cros, Vincent .
NATURE REVIEWS MATERIALS, 2017, 2 (07)
[10]  
Frangos M., 2011, Large-Scale Inverse Problems and Quantification of Uncertainty, P123