Portfolio optimization under DC transaction costs and minimal transaction unit constraints

被引:26
作者
Konno, H [1 ]
Wijayanayake, A
机构
[1] Tokyo Inst Technol, Dept Ind Engn & Management, Tokyo, Japan
[2] Tokyo Inst Technol, Ctr Res Adv Financial Technol, Tokyo, Japan
关键词
portfolio optimization; D.c; programming; nonconvex transaction cost; minimal transaction unit constraint; mean-absolute deviation model;
D O I
10.1023/A:1013850928936
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper addresses itself to a portfolio optimization problem under nonconvex transaction costs and minimal transaction unit constraints. Associated with portfolio construction is a fee for purchasing assets. Unit transaction fee is larger when the amount of transaction is smaller. Hence the transaction cost is usually a concave function up to certain point. When the amount of transaction increases, the unit price of assets increases due to illiquidity/market impact effects. Hence the transaction cost becomes convex beyond certain bound. Therefore, the net expected return becomes a general d.c. function (difference of two convex functions). We will propose a branch-and-bound algorithm for the resulting d.c. maximization problem subject to a constraint on the level of risk measured in terms of the absolute deviation of the rate of return of a portfolio. Also, we will show that the minimal transaction unit constraints can be incorporated without excessively increasing the amount of computation.
引用
收藏
页码:137 / 154
页数:18
相关论文
共 50 条
  • [41] An algorithm for portfolio optimization with variable transaction costs, part 2: Computational analysis
    Best, M. J.
    Hlouskova, J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 135 (03) : 531 - 547
  • [42] An Algorithm for Portfolio Optimization with Variable Transaction Costs, Part 2: Computational Analysis
    M. J. Best
    J. Hlouskova
    Journal of Optimization Theory and Applications, 2007, 135 : 531 - 547
  • [43] Growth Optimal Portfolio Selection Under Proportional Transaction Costs with Obligatory Diversification
    T. Duncan
    B. Pasik Duncan
    L. Stettner
    Applied Mathematics & Optimization, 2011, 63 : 107 - 132
  • [44] Growth Optimal Portfolio Selection Under Proportional Transaction Costs with Obligatory Diversification
    Duncan, T.
    Duncan, B. Pasik
    Stettner, L.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (01) : 107 - 132
  • [45] Optimization of a long-short portfolio under nonconvex transaction cost
    Konno, H
    Akishino, K
    Yamamoto, R
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 32 (1-2) : 115 - 132
  • [46] Transaction cost optimization for online portfolio selection
    Li, Bin
    Wang, Jialei
    Huang, Dingjiang
    Hoi, Steven C. H.
    QUANTITATIVE FINANCE, 2018, 18 (08) : 1411 - 1424
  • [47] The worst-case scenario: robust portfolio optimization with discrete distributions and transaction costs
    Mills, Ebenezer Fiifi Emire Atta
    AIMS MATHEMATICS, 2024, 9 (08): : 20919 - 20938
  • [48] Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs
    Filomena, Tiago P.
    Lejeune, Miguel A.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 161 (01) : 308 - 329
  • [49] Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs
    Takano Y.
    Nanjo K.
    Sukegawa N.
    Mizuno S.
    Computational Management Science, 2015, 12 (2) : 319 - 340
  • [50] Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs
    Tiago P. Filomena
    Miguel A. Lejeune
    Journal of Optimization Theory and Applications, 2014, 161 : 308 - 329