A note on sharp 1-dimensional Poincare inequalities

被引:9
作者
Chua, SK
Wheeden, RL
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
D O I
10.1090/S0002-9939-06-08545-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and -infinity < a < b < infinity. We show by using elementary methods that the best constant C ( necessarily independent of a and b) for which the 1-dimensional Poincare inequality parallel to f - f(av)parallel to(1)(L)([a, b]) <= C(b - a)(2-1/p) parallel to f'parallel to L-P[a,L-b] holds for all Lipschitz continuous functions f, with f(av) = integral/(b-a), is C = 1/2(1+p')-1/p'.
引用
收藏
页码:2309 / 2316
页数:8
相关论文
共 29 条
[21]   GAUSSIAN KERNELS HAVE ONLY GAUSSIAN MAXIMIZERS [J].
LIEB, EH .
INVENTIONES MATHEMATICAE, 1990, 102 (01) :179-208
[22]  
Lions P L., 1985, Rev. Mat. Iberoam., V1, P145, DOI 10.4171/RMI/6
[23]  
Lu GZ, 1998, INDIANA U MATH J, V47, P123
[24]  
Mazja V. G., 1985, Springer Ser. Soviet Math.
[25]  
Payne L. E., 1960, Arch. Rational Mech. Anal., V5, P286, DOI DOI 10.1007/BF00252910
[27]   WEIGHTED HARDY AND OPIAL-TYPE INEQUALITIES [J].
SINNAMON, GJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 160 (02) :434-445
[28]  
Talenti G., 1976, Ann. di Mat. Pura ed Appl., V110, P353, DOI DOI 10.1007/BF02418013
[29]  
TALENTI G, 1986, 5 INT C GEN IN OB, P401