A note on sharp 1-dimensional Poincare inequalities

被引:9
作者
Chua, SK
Wheeden, RL
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
D O I
10.1090/S0002-9939-06-08545-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and -infinity < a < b < infinity. We show by using elementary methods that the best constant C ( necessarily independent of a and b) for which the 1-dimensional Poincare inequality parallel to f - f(av)parallel to(1)(L)([a, b]) <= C(b - a)(2-1/p) parallel to f'parallel to L-P[a,L-b] holds for all Lipschitz continuous functions f, with f(av) = integral/(b-a), is C = 1/2(1+p')-1/p'.
引用
收藏
页码:2309 / 2316
页数:8
相关论文
共 29 条
[11]  
CHUA SK, IN PRESS P LONDON MA
[12]   A SHARP FORM OF POINCARE TYPE INEQUALITIES ON BALLS AND SPHERES [J].
CIANCHI, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1989, 40 (04) :558-569
[13]  
Cianchi A, 1996, MATH NACHR, V180, P15
[14]  
Coron JM., 1984, Ann Scuola Norm Sup Pisa Cl Sci, V11, P57
[15]  
Gilbarg D., 1997, ELLIPTIC PARTIAL DIF
[16]  
GURKA P, 1989, BANACH CTR PUBL, V229, P169
[17]  
Hayman W. K., 1977, APPL ANAL, V7, P247, DOI DOI 10.1080/00036817808839195
[18]   SYMMETRIZATION OF FUNCTIONS IN SOBOLEV SPACES AND ISOPERIMETRIC INEQUALITY [J].
HILDEN, K .
MANUSCRIPTA MATHEMATICA, 1976, 18 (03) :215-235
[19]  
KUFNER A, 1990, 219 PIT RES
[20]   SHARP CONSTANTS IN THE HARDY-LITTLEWOOD-SOBOLEV AND RELATED INEQUALITIES [J].
LIEB, EH .
ANNALS OF MATHEMATICS, 1983, 118 (02) :349-374