A note on sharp 1-dimensional Poincare inequalities

被引:9
作者
Chua, SK
Wheeden, RL
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
关键词
D O I
10.1090/S0002-9939-06-08545-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and -infinity < a < b < infinity. We show by using elementary methods that the best constant C ( necessarily independent of a and b) for which the 1-dimensional Poincare inequality parallel to f - f(av)parallel to(1)(L)([a, b]) <= C(b - a)(2-1/p) parallel to f'parallel to L-P[a,L-b] holds for all Lipschitz continuous functions f, with f(av) = integral/(b-a), is C = 1/2(1+p')-1/p'.
引用
收藏
页码:2309 / 2316
页数:8
相关论文
共 29 条
[1]   An optimal Poincare inequality in L1 for convex domains [J].
Acosta, G ;
Durán, RG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :195-202
[2]  
Adams R., 1975, Sobolev space
[3]  
Almgren F. J., 1989, J. Amer. Math. Soc., V2, P683, DOI [10.1090/S0894-0347-1989-1002633-4, DOI 10.1090/S0894-0347-1989-1002633-4]
[4]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[5]  
Bebendorf M, 2003, Z ANAL ANWEND, V22, P751
[6]   On sharp Sobolev embedding and the logarithmic Sobolev inequality [J].
Beckner, W ;
Pearson, M .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 :80-84
[7]  
BOJARSKI B, 1989, LECT NOTES MATH, V1351, P52
[8]  
Chua KS, 2000, INDIANA U MATH J, V49, P143
[9]   EXTENSION-THEOREMS ON WEIGHTED SOBOLEV SPACES [J].
CHUA, SK .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (04) :1027-1076