Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc-Air Batteries

被引:11
作者
Chang, Haiyang [1 ]
Cong, Shanshan [1 ]
Wang, Lei [1 ]
Wang, Cheng [1 ,2 ]
机构
[1] Heilongjiang Univ, Key Lab Funct Inorgan Mat Chem, Minist Educ Peoples Republ China, Harbin 150080, Peoples R China
[2] Chem & Chem Engn Guangdong Lab, Jieyang Branch, Jieyang 515200, Peoples R China
基金
国家重点研发计划;
关键词
transition metal catalyst; oxygen evolution reaction; oxygen reduction reaction; zinc-air battery; catalytic mechanism; METAL-ORGANIC FRAMEWORK; NITROGEN-DOPED CARBON; IN-SITU GROWTH; ZN-AIR; POROUS CARBON; REDUCTION REACTION; ACTIVITY TRENDS; EVOLUTION; PERFORMANCE; NANOSHEETS;
D O I
10.3390/nano12213834
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-air batteries (ZABs) have several advantages, including high energy density, cheap price and stable performances with good application prospects in the field of power batteries. The charging and discharging reactions for the air cathode of ZABs are the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), respectively, which play an important role in the whole performance of ZAB. Due to the cost and limited reserves of highly active precious metal catalysts, it is crucial to design alternative efficient and stable dual-functional non-precious metal catalysts. In the present review, we present a systematic summary of the recent progress in the use of transition metal-based electrocatalysts as alternatives to precious metals for the positive poles of ZAB air. Combined with state-of-the-art in situ characterization technologies, a deep understanding of the catalytic mechanism of OER/ORR provided unique insights into the precise design of excellent synthetic non-precious metal catalysts from the perspective of atomic structure. This review further shows that the hybrid electric battery is a new strategy to improve the efficiency of the hybrid electric battery, which could be available to alleviate the problem of resource shortage. Finally, the challenges and research trends for the future development of ZABs were clearly proposed.
引用
收藏
页数:30
相关论文
共 156 条
[1]   Review-Nanostructural ZnO-Based Electrochemical Sensor for Environmental Application [J].
Ahmed, Md. Maruf ;
Zhao, Ruihua ;
Du, Jianping ;
Li, Jinping .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (02)
[2]   Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode [J].
Aijaz, Arshad ;
Masa, Justus ;
Roesler, Christoph ;
Xia, Wei ;
Weide, Philipp ;
Botz, Alexander J. R. ;
Fischer, Roland A. ;
Schuhmann, Wolfgang ;
Muhler, Martin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :4087-4091
[3]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[4]   Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte [J].
An, Li ;
Zhang, Zhiyong ;
Feng, Jianrui ;
Lv, Fan ;
Li, Yuxuan ;
Wang, Rui ;
Lu, Min ;
Gupta, Ram B. ;
Xi, Pinxian ;
Zhang, Sen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (50) :17624-17631
[5]  
Bakhir VM, 2018, INT J PHARM RES ALLI, V7, P41
[6]   NiFe-LDHs@MnO2 heterostructure as a bifunctional electrocatalyst for oxygen-involved reactions and Zn-air batteries [J].
Bao, Xinjun ;
Xie, Kaifang ;
Zhang, Zejie ;
Liu, Zhixiong ;
Zhou, Hengshu ;
Luo, Fengxiang ;
Zhou, Debi ;
Wang, Hong-En .
IONICS, 2022, 28 (03) :1273-1283
[7]   Charge-Transfer Effects in Ni-Fe and Ni-Fe-Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction [J].
Bates, Michael K. ;
Jia, Qingying ;
Doan, Huong ;
Liang, Wentao ;
Mukerjee, Sanjeev .
ACS CATALYSIS, 2016, 6 (01) :155-161
[8]   Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism [J].
Burke, Michaela S. ;
Kast, Matthew G. ;
Trotochaud, Lena ;
Smith, Adam M. ;
Boettcher, Shannon W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (10) :3638-3648
[9]   Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions [J].
Calle-Vallejo, Federico ;
Ignacio Martinez, Jose ;
Rossmeisl, Jan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (34) :15639-15643
[10]   Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy [J].
Chen, Jamie Y. C. ;
Dang, Lianna ;
Liang, Hanfeng ;
Bi, Wenli ;
Gerken, James B. ;
Jin, Song ;
Alp, E. Ercan ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15090-15093