Intense quenching of fluorescence intensity of poly(vinyl pyrrolidone) molecules in presence of gold nanoparticles

被引:28
作者
Behera, M. [1 ,2 ]
Ram, S. [2 ]
机构
[1] Silicon Inst Technol, Silicon Hills, Bhubaneswar 751024, Odisha, India
[2] Indian Inst Technol, Mat Sci Ctr, Kharagpur 721302, W Bengal, India
关键词
Nanoparticle; Fluorescence quenching; Stern-Volmer plot; Electron transfer; METAL; PHOTOLUMINESCENCE; TRANSPORT; FILMS;
D O I
10.1007/s13204-012-0159-8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study the quenching of fluorescence intensity of 40 g/L poly(vinyl pyrrolidone) PVP molecules by varying the content of gold nanoparticles (GNPs) from 1 to 5 mu M in 1-butanol. A profound exponential decay of the emission band intensity in the pi <- n pi* band of the PVP molecules at similar to 392 nm upon gradual addition of the GNPs demonstrates an existence of an excited state interaction of NPs with the PVP molecules in a gold colloid in 1-butanol. Such quenching is caused by the non-bonding electron transfer from the O-atom of carbonyl group of the PVP molecules to the surface of the GNP. X-ray photoemission spectroscopy (XPS) study corroborates the spectroscopic results. A linear Stern-Volmer plot with a quenching constant of 2.23 x 10(6) M-1 reveals dynamic quenching in a non-aqueous NF. A mechanism of fluorescence quenching was proposed in support of XPS and images taken from hybrid nanostructure using transmission electron microscope. Study on quenching of fluorescence intensity of PVP fluorophore in the presence of GNPs is useful for optoelectronic devices and biosensors.
引用
收藏
页码:543 / 548
页数:6
相关论文
共 24 条
[1]   Formation of gold nanoparticles in polymethylmethacrylate by UV irradiation [J].
Abyaneh, Majid Kazemian ;
Paramanik, D. ;
Varma, S. ;
Gosavi, S. W. ;
Kulkarni, S. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (12) :3771-3779
[2]   Gold Nanoparticle Synthesis, Morphology Control, and Stabilization Facilitated by Functional Polymers [J].
Alexandridis, Paschalis .
CHEMICAL ENGINEERING & TECHNOLOGY, 2011, 34 (01) :15-28
[3]   Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles [J].
Balasubramanian, R ;
Kim, B ;
Tripp, SL ;
Wang, XJ ;
Lieberman, M ;
Wei, A .
LANGMUIR, 2002, 18 (09) :3676-3681
[4]   Solubilization and stabilization of fullerene C60 in presence of poly(vinyl pyrrolidone) molecules in water [J].
Behera, M. ;
Ram, S. .
JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2012, 72 (1-2) :233-239
[5]  
Behera M, 2012, APPL NANOSCI, DOI 10-1007/s13204-012-0076-x
[6]   Fluorescence quenching of dye molecules near gold nanoparticles:: Radiative and nonradiative effects -: art. no. 203002 [J].
Dulkeith, E ;
Morteani, AC ;
Niedereichholz, T ;
Klar, TA ;
Feldmann, J ;
Levi, SA ;
van Veggel, FCJM ;
Reinhoudt, DN ;
Möller, M ;
Gittins, DI .
PHYSICAL REVIEW LETTERS, 2002, 89 (20) :203002-203002
[7]   Gold nanoparticles quench fluorescence by phase induced radiative rate suppression [J].
Dulkeith, E ;
Ringler, M ;
Klar, TA ;
Feldmann, J ;
Javier, AM ;
Parak, WJ .
NANO LETTERS, 2005, 5 (04) :585-589
[8]   Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes [J].
Eustis, S ;
El-Sayed, MA .
CHEMICAL SOCIETY REVIEWS, 2006, 35 (03) :209-217
[9]  
Gersten JI, 2005, THEORY OF FLUORESCEN, V8
[10]   Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles [J].
Ghosh, SK ;
Pal, A ;
Kundu, S ;
Nath, S ;
Pal, T .
CHEMICAL PHYSICS LETTERS, 2004, 395 (4-6) :366-372