A Functorial Approach to Gabrielk-quiver Constructions for Coalgebras and Pseudocompact Algebras

被引:0
作者
Iusenko, Kostiantyn [1 ]
MacQuarrie, John William [2 ]
Quirino, Samuel [1 ,2 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP, Brazil
[2] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2021年 / 52卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Adjoint functors; Path coalgebra; Complete path algebra; Gabrielk-quiver; HEREDITARY COALGEBRAS; COMODULES; MODULES;
D O I
10.1007/s00574-020-00227-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the path coalgebra and Gabriel quiver constructions as functors between the category ofk-quivers and the category of pointedk-coalgebras, forka field. We define a congruence relation on the coalgebra side, show that the functors above respect this relation, and prove that the induced Gabrielk-quiver functor is left adjoint to the corresponding path coalgebra functor. We dualize, obtaining adjoint pairs of functors (contravariant and covariant) for pseudocompact algebras. Using these tools we describe precisely to what extent presentations of coalgebras and pseudocompact algebras in terms of path objects are unique, giving an application to homogeneous algebras.
引用
收藏
页码:697 / 719
页数:23
相关论文
共 40 条