Hilbert modules over a planar algebra and the Haagerup property

被引:2
作者
Brothier, Arnaud [1 ]
Jones, Vaughan F. R. [1 ]
机构
[1] Vanderbilt Univ, Dept Math, Stevenson Ctr 1326, Nashville, TN 37212 USA
基金
美国国家科学基金会;
关键词
Subfactors; Planar algebras; Standard invariants; Haagerup property; SUBFACTORS; AMENABILITY; INDEX;
D O I
10.1016/j.jfa.2015.09.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a subfactor planar algebra P and a Hilbert P-module of lowest weight 0 we build a bimodule over the symmetric enveloping inclusion associated to P. As an application we prove diagrammatically that the Temperley-Lieb-Jones standard invariants have the Haagerup property. This provides a new proof of a result due to Papa and Vaes. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3634 / 3644
页数:11
相关论文
共 22 条
  • [1] [Anonymous], 1998, Enseign. Math.
  • [2] ON THE METHOD OF CONSTRUCTING IRREDUCIBLE FINITE INDEX SUBFACTORS OF POPA
    BOCA, F
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 201 - 231
  • [3] Curran S, 2014, T AM MATH SOC, V366, P113
  • [4] CCAP for Universal Discrete Quantum Groups
    De Commer, Kenny
    Freslon, Amaury
    Yamashita, Makoto
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 677 - 701
  • [5] Ghosh S.K., ARXIV150206543
  • [6] Guionnet A., 2010, CLAY MATH P, V11, P201
  • [7] Jones V.F.R., ARXIVMATH0105071
  • [8] Jones V.F.R., ARXIVMATH9909027
  • [9] AN ORTHOGONAL APPROACH TO THE SUBFACTOR OF A PLANAR ALGEBRA
    Jones, Vaughan
    Shlyakhtenko, Dimitri
    Walker, Kevin
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2010, 246 (01) : 187 - 197
  • [10] INDEX FOR SUBFACTORS
    JONES, VFR
    [J]. INVENTIONES MATHEMATICAE, 1983, 72 (01) : 1 - 25