BLOW-UP ESTIMATES OF POSITIVE SOLUTIONS OF A REACTION-DIFFUSION SYSTEM

被引:0
作者
Chen, Hongwei [1 ]
机构
[1] Christopher Newport Univ, Dept Math, Newport News, VA 23606 USA
关键词
Reaction-diffusion systems; a priori estimates; blow-up rate; asymptotic behavior;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with positive solutions of the reaction-diffusion system u(t) - Delta u = u(m1)v(n1) , v(t) - Delta v = u(m2)v(n2) which blow up at t = T. We obtain the following estimates on the blow-up rates: c(T- t)(-(n1-n2+1)/gamma) <= max(x is an element of Omega) u(x, t) <= C(T-t)(-(n1-n2+1)/gamma) c(T- t)(-(m2-m1+1)/gamma) <= max(x is an element of Omega) v(x, t) <= C(T-t)(-(m2-m1+1)/gamma) for some positive constants c,C and gamma = m(2)n(1), -(1 - m(1))(1 - n(2)).
引用
收藏
页码:182 / 188
页数:7
相关论文
共 12 条
[1]   Liouville theorems and blow up behaviour in semilinear reaction diffusion systems [J].
Andreucci, D ;
Herrero, MA ;
Velazquez, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01) :1-53
[2]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[3]  
CARISTI G, 1994, J DIFF EQNS, V113, P1265
[4]   Global existence and blow-up for a nonlinear reaction-diffusion system [J].
Chen, HW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 212 (02) :481-492
[5]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[6]   ASYMPTOTICALLY SELF-SIMILAR BLOW-UP OF SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (03) :297-319
[7]   NONDEGENERACY OF BLOWUP FOR SEMILINEAR HEAT-EQUATIONS [J].
GIGA, Y ;
KOHN, RV .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (06) :845-884
[8]   CHARACTERIZING BLOWUP USING SIMILARITY VARIABLES [J].
GIGA, Y ;
KOHN, RV .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (01) :1-40
[9]  
Ladyzenskaja O., 1968, TRANSL MATH MONOGR, V23
[10]  
Pao C.V., 1992, NONLINEAR PARABOLIC, DOI DOI 10.1007/978-1-4615-3034-3