High Island Densities and Long Range Repulsive Interactions: Fe on Epitaxial Graphene

被引:40
作者
Binz, S. M. [1 ,2 ]
Hupalo, M. [2 ]
Liu, Xiaojie [2 ,3 ]
Wang, C. Z. [2 ]
Lu, Wen-Cai [3 ,4 ,5 ]
Thiel, P. A. [1 ,6 ]
Ho, K. M. [2 ]
Conrad, E. H. [7 ]
Tringides, M. C. [2 ]
机构
[1] Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[3] Jilin Univ, Inst Theoret Chem, State Key Lab Theoret & Computat Chem, Changchun 130021, Jilin, Peoples R China
[4] Qingdao Univ, Coll Phys, Qingdao 266071, Shandong, Peoples R China
[5] Qingdao Univ, Growing Base State Key Lab, Lab Fiber Mat & Modern Text, Qingdao 266071, Shandong, Peoples R China
[6] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[7] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
GROWTH;
D O I
10.1103/PhysRevLett.109.026103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The understanding of metal nucleation on graphene is essential for promising future applications, especially of magnetic metals which can be used in spintronics or computer storage media. A common method to study the grown morphology is to measure the nucleated island density n as a function of growth parameters. Surprisingly, the growth of Fe on graphene is found to be unusual because it does not follow classical nucleation: n is unexpectedtly high, it increases continuously with the deposited amount theta and shows no temperature dependence. These unusual results indicate the presence of long range repulsive interactions. Kinetic Monte Carlo simulations and density functional theory calculations support this conclusion. In addition to answering an outstanding question in epitaxial growth, i.e., to find systems where long range interactions are present, the high density of magnetic islands, tunable with theta, is of interest for nanomagnetism applications.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Effects of Metallic Contacts on Electron Transport through Graphene [J].
Barraza-Lopez, Salvador ;
Vanevic, Mihajlo ;
Kindermann, Markus ;
Chou, M. Y. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Nature, strength, and consequences of indirect adsorbate interactions on metals [J].
Bogicevic, A ;
Ovesson, S ;
Hyldgaard, P ;
Lundqvist, BI ;
Brune, H ;
Jennison, DR .
PHYSICAL REVIEW LETTERS, 2000, 85 (09) :1910-1913
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Self-limiting growth of copper islands on TiO2(110)-(1 x 1) [J].
Chen, DA ;
Bartelt, MC ;
Hwang, RQ ;
McCarty, KF .
SURFACE SCIENCE, 2000, 450 (1-2) :78-97
[6]   Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds [J].
Evans, J. W. ;
Thiel, P. A. ;
Bartelt, M. C. .
SURFACE SCIENCE REPORTS, 2006, 61 (1-2) :1-128
[7]   Island nucleation in thin-film epitaxy: A first-principles investigation [J].
Fichthorn, KA ;
Scheffler, M .
PHYSICAL REVIEW LETTERS, 2000, 84 (23) :5371-5374
[8]   Atomic Hole Doping of Graphene [J].
Gierz, Isabella ;
Riedl, Christian ;
Starke, Ulrich ;
Ast, Christian R. ;
Kern, Klaus .
NANO LETTERS, 2008, 8 (12) :4603-4607
[9]   Strong metal adatom-substrate interaction of Gd and Fe with graphene [J].
Hupalo, M. ;
Binz, S. ;
Tringides, M. C. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (04)
[10]   Growth mechanism for epitaxial graphene on vicinal 6H-SiC(0001) surfaces: A scanning tunneling microscopy study [J].
Hupalo, M. ;
Conrad, E. H. ;
Tringides, M. C. .
PHYSICAL REVIEW B, 2009, 80 (04)